The numpy.argmax() function returns indices of the max element of the array in a particular axis.
Syntax :
numpy.argmax(array, axis = None, out = None)
Parameters :
array : Input array to work on
axis : [int, optional]Along a specified axis like 0 or 1
out : [array optional]Provides a feature to insert output to the out
array and it should be of appropriate shape and dtype
Return :
Array of indices into the array with same shape as array.shape
with the dimension along axis removed.
Code 1 :
Python
# Python Program illustrating
# working of argmax()
import numpy as geek
# Working on 2D array
array = geek.arange(12).reshape(3, 4)
print("INPUT ARRAY : \n", array)
# No axis mentioned, so works on entire array
print("\nMax element : ", geek.argmax(array))
# returning Indices of the max element
# as per the indices
print("\nIndices of Max element : ", geek.argmax(array, axis=0))
print("\nIndices of Max element : ", geek.argmax(array, axis=1))
Output :
INPUT ARRAY :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
Max element : 11
Indices of Max element : [2 2 2 2]
Indices of Max element : [3 3 3]
Code 2 :
Python
# Python Program illustrating
# working of argmax()
import numpy as geek
# Working on 2D array
array = geek.random.randint(16, size=(4, 4))
print("INPUT ARRAY : \n", array)
# No axis mentioned, so works on entire array
print("\nMax element : ", geek.argmax(array))
# returning Indices of the max element
# as per the indices
'''
[[ 0 3 8 13]
[12 11 2 11]
[ 5 13 8 3]
[12 15 3 4]]
^ ^ ^ ^
12 15 8 13 - element
1 3 0 0 - indices
'''
print("\nIndices of Max element : ", geek.argmax(array, axis = 0))
'''
ELEMENT INDEX
->[[ 0 3 8 13] 13 3
->[12 11 2 11] 12 0
->[ 5 13 8 3] 13 1
->[12 15 3 4]] 15 1
'''
print("\nIndices of Max element : ", geek.argmax(array, axis = 1))
Output :
INPUT ARRAY :
[[ 0 3 8 13]
[12 11 2 11]
[ 5 13 8 3]
[12 15 3 4]]
Max element : 15
Indices of Max element : [1 3 0 0]
Indices of Max element : [3 0 1 1]
Code 3 :
Python
# Python Program illustrating
# working of argmax()
import numpy as geek
# Working on 2D array
array = geek.arange(10).reshape(2, 5)
print("array : \n", array)
array[0][1] = 6
print("\narray : \n", array)
# Returns max element
print("\narray : ", geek.argmax(array))
# First occurrence of an max element is given
print("\nMAX ELEMENT INDICES : ", geek.argmax(array, axis = 0))
Output :
array :
[[0 1 2 3 4]
[5 6 7 8 9]]
array :
[[0 6 2 3 4]
[5 6 7 8 9]]
array : 9
MAX ELEMENT INDICES : [1 0 1 1 1]
Note :
These codes won’t run on online IDE’s. Please run them on your systems to explore the working.
Similar Reads
numpy.amax() in Python The numpy.amax() method returns the maximum of an array or maximum along the axis(if mentioned). Syntax: numpy.amax(arr, axis = None, out = None, keepdims = <class numpy._globals._NoValue>) Parameters -Â arr : [array_like] input dataaxis : [int or tuples of int] axis along which we want the ma
2 min read
numpy.argmin() in Python The numpy.argmin() method returns indices of the min element of the array in a particular axis. Syntax : numpy.argmin(array, axis = None, out = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to inser
2 min read
numpy.fmax() in Python numpy.fmax() function is used to compute element-wise maximum of array elements. This function compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first
2 min read
numpy.amin() in Python The numpy.amin() function returns minimum of an array or minimum along axis(if mentioned). Syntax : numpy.amin(arr, axis = None, out = None, keepdims = <class numpy._globals._NoValue>) Parameters : arr : [array_like]input dataaxis : [int or tuples of int]axis along which we want the min value.
2 min read
numpy.nanargmax() in Python The numpy.nanargmax() function returns indices of the max element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs. Syntax: numpy.nanargmax(array, axis = None) Parameters : array : Input array to work on axis : [int, optional]Al
2 min read