numpy.random.standard_cauchy() in 1Python Last Updated : 18 Aug, 2020 Comments Improve Suggest changes Like Article Like Report With the help of numpy.random.standard_cauchy() method, we can see get the random samples from a standard cauchy distribution and return the random samples. Standard cauchy distribution Syntax : numpy.random.standard_cauchy(size=None) Return : Return the random samples as numpy array. Example #1 : In this example we can see that by using numpy.random.standard_cauchy() method, we are able to get the random samples of standard cauchy distribution and generate the random samples from it. Python3 # import numpy import numpy as np import matplotlib.pyplot as plt # Using standard_cauchy() method gfg = np.random.standard_cauchy(100000) gfg = gfg[(gfg>-25) & (gfg<25)] plt.hist(gfg, bins = 100, density = True) plt.show() Output : Example #2 : Python3 # import numpy import numpy as np import matplotlib.pyplot as plt # Using standard_cauchy() method gfg = np.random.standard_cauchy(100000) gfg1 = np.random.power([gfg>0], 100000) plt.hist(gfg1, bins = 100, density = True) plt.show() Output : Comment More infoAdvertise with us Next Article numpy.random.standard_exponential() in Python J jitender_1998 Follow Improve Article Tags : Python Python-numpy Python numpy-Random Practice Tags : python Similar Reads numpy.random.standard_exponential() in Python With the help of numpy.random.standard_exponential() method, we can get the random samples of standard exponential distribution and return the random samples. Syntax : numpy.random.standard_exponential(size=None) Return : Return the random samples as numpy array. Example #1 : In this example we can 1 min read numpy.random.standard_gamma() in Python With the help of numpy.random.standard_gamma() method, we can get the random samples from standard gamma distribution and return the random samples by using this method. Standard gamma distribution Syntax : numpy.random.standard_gamma(shape, size=None) Return : Return the random samples as numpy arr 1 min read numpy.random.standard_t() in Python With the help of numpy.random.standard_t() method, we can get the random samples from standard T distribution having degree of freedom and return the random samples by using this method. Standard T distribution Syntax : numpy.random.standard_t(df, size=None) # Here df is degree of freedom. Return : 1 min read numpy.random.standard_normal() in Python With the help of numpy.random.standard_normal() method, we can get the random samples from standard normal distribution and return the random samples as numpy array by using this method. Syntax : numpy.random.standard_normal(size=None) Return : Return the random samples as numpy array. Example #1 : 1 min read Random sampling in numpy | random() function numpy.random.random() is one of the function for doing random sampling in numpy. It returns an array of specified shape and fills it with random floats in the half-open interval [0.0, 1.0). Syntax : numpy.random.random(size=None) Parameters : size : [int or tuple of ints, optional] Output shape. If 2 min read Random sampling in numpy | ranf() function numpy.random.ranf() is one of the function for doing random sampling in numpy. It returns an array of specified shape and fills it with random floats in the half-open interval [0.0, 1.0). Syntax : numpy.random.ranf(size=None) Parameters : size : [int or tuple of ints, optional] Output shape. If the 2 min read Like