pandas.api.types.is_datetime64_dtype() Function in Python Last Updated : 11 Apr, 2022 Comments Improve Suggest changes Like Article Like Report The pandas.api.types.is_datetime64_dtype() function is used to check whether an array like object or a datatype is of the datetime64 dtype. Syntax: pandas.api.types.is_datetime64_dtype(arr_or_dtype) parameters: arr_or_dtype : array like iterable object or datatype. function returns: a boolean value. True or False. True if object is of the type datetime64 False if not Example 1: pandas.api.types is imported and is_datetime64_dtype() function is used to verify whether the given array is of type datetime64. as it is of type int , false is returned. Python3 # importing packages import pandas.api.types as pd print(pd.is_datetime64_dtype([10, 20, 30])) Output: FalseExample 2: In this example, a datetime array is created and np.datetime64 is given as its type. is_datetime64_dtype() function returns 'True' as the array is of the datetime64 type. Python3 # importing packages import pandas.api.types as pd import datetime import numpy as np date_list = np.array([datetime.datetime.today() + datetime.timedelta(days=x) for x in range(10)], dtype=np.datetime64) print(pd.is_datetime64_dtype(date_list)) Output: TrueExample 3: numpy.datetime64 dtype from the is directly passed in the method. 'True' is returned. Python3 # importing packages import pandas.api.types as pd import numpy as np print(pd.is_datetime64_dtype(np.datetime64)) Output: TrueExample 4: An empty NumPy array of type datetime64 is created and it's passed into is_datetime64_dtype() function. 'True' is returned. Python3 # importing packages import pandas.api.types as pd import numpy as np datetime_array = np.array([], dtype=np.datetime64) print(pd.is_datetime64_dtype(datetime_array)) Output: TrueExample 5: A string object is passed into the is_datetime64_dtype() function and 'False' is returned. Python3 # importing packages import pandas.api.types as pd print(pd.is_datetime64_dtype('string')) Output: False Comment More infoAdvertise with us Next Article pandas.api.types.is_datetime64_dtype() Function in Python isitapol2002 Follow Improve Article Tags : Python Python-pandas Python pandas-methods Practice Tags : python Similar Reads Python pandas.api.types.is_dict_like() Function In this article, we will be looking at the insight of the is_dict_like() function from the pandas.api.types package with various examples in a python programming language. is_dict_like is a method that helps to specify whether the given object for the is_dict_like method is a dictionary or not. Syn 2 min read Python Pandas - pandas.api.types.is_file_like() Function In this article, we will be looking toward the functionality of pandas.api.types.is_file_like() from the pandas.api.types module with its various examples in the Python language. An object must be an iterator AND have a read or write method as an attribute to be called file-like. It is important to 2 min read Python | Pandas DatetimeIndex.is_year_end Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas DatetimeIndex.is_year_end attribute is an indicator for whether the date is the 2 min read Python | Pandas DatetimeIndex.is_quarter_end Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas DatetimeIndex.is_quarter_end attribute is an indicator for whether the date is 2 min read Python | Pandas DatetimeIndex.is_year_start Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas DatetimeIndex.is_year_start attribute is an indicator for whether the date is t 2 min read numpy.dtype.subdtype() function â Python numpy.dtype.subdtype() function returns Tuple(item_dtype, shape) if this dtype describes a sub-array, and None otherwise. Syntax : numpy.dtype.subdtype(type) type : [dtype] The input data-type. Return : Return Tuple(item_dtype, shape) if this dtype describes a sub-array, and None otherwise. Code #1 1 min read Python | Pandas DatetimeIndex.is_leap_year Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas DatetimeIndex.is_leap_year attribute return a boolean indicator if the date bel 2 min read Python | Pandas DatetimeIndex.is_quarter_start Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas DatetimeIndex.is_quarter_start attribute is an indicator for whether the date i 2 min read Python | Pandas Timestamp.to_datetime64 Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Timestamp.to_datetime64() function return a numpy.datetime64 object with ânsâ p 2 min read Get the data type of column in Pandas - Python Letâs see how to get data types of columns in the pandas dataframe. First, Letâs create a pandas dataframe. Example: Python3 # importing pandas library import pandas as pd # List of Tuples employees = [ ('Stuti', 28, 'Varanasi', 20000), ('Saumya', 32, 'Delhi', 25000), ('Aaditya', 25, 'Mumbai', 40000 3 min read Like