Print all Repetitive elements in given Array within value range [A, B] for Q queries
Last Updated :
23 Jul, 2025
Given an array arr[] of size N, and Q queries of the form [A, B], the task is to find all the unique elements from the array which are repetitive and their values lie between A and B (both inclusive) for each of the Q queries.
Examples:
Input: arr[] = { 1, 5, 1, 2, 3, 3, 4, 0, 0 }, Q = 2, queries={ { 1, 3 }, { 0, 0 } }
Output: {3, 1}, { 0 }
Explanation: For the first query the elements 1 and 3 lie in the given range and occurs more than once.
For the second queryonly 0 lies in the range and is repetitive in nature.
Input: arr[] = {1, 5, 1, 2, 3, 4, 0, 0}, Q = 1, queries={ { 1, 2 } }
Output: 1
Naive Approach: The basic approach to solve this problem is to use nested loops. A traversal of all elements is performed by the outer loop, and checking whether the element picked by the outer loop appears anywhere else is performed by the inner loop. Then, if it appears elsewhere, check if it is lying within the range of [A, B]. If yes, then print it.
Below is the implementation of the above approach.
C++14
// C++ code for the above approach.
#include <bits/stdc++.h>
using namespace std;
// Function to print elements
void printElements(int arr[], int N, int A, int B)
{
bool flag = false;
for (int i = 0; i < N; i++) {
if (arr[i] >= A && arr[i] <= B) {
bool repeat = false;
for (int j = i + 1; j < N; j++) {
if (arr[i] == arr[j]) {
repeat = true;
break;
}
}
// Print the elements
// if it repeats
if (repeat) {
if (flag)
cout << " ";
cout << arr[i];
flag = true;
}
}
}
if (!flag)
cout << -1;
}
// Function to find the elements
// satisfying given condition for each query
void findElements(int arr[], int N, int Q,
vector<pair<int, int> >& queries)
{
for (int i = 0; i < Q; i++) {
int A = queries[i].first;
int B = queries[i].second;
// function to printing elements in range
printElements(arr, N, A, B);
cout << endl;
}
}
// Driver code
int main()
{
int arr[] = { 1, 5, 1, 2, 3, 3, 4, 0, 0 };
int N = sizeof(arr) / sizeof(arr[0]);
int Q = 2;
vector<pair<int, int> > queries
= { { 1, 3 }, { 0, 0 } };
// Function call
findElements(arr, N, Q, queries);
return 0;
}
Java
// Java code for the above approach.
import java.util.*;
public class Main {
// Custom Pair class to hold two values
static class Pair<F, S> {
F first;
S second;
Pair(F first, S second) {
this.first = first;
this.second = second;
}
}
// Function to print elements within a range
// and are repeating
static void printElements(int[] arr, int N, int A, int B) {
boolean flag = false;
for (int i = 0; i < N; i++) {
if (arr[i] >= A && arr[i] <= B) {
boolean repeat = false;
for (int j = i + 1; j < N; j++) {
if (arr[i] == arr[j]) {
repeat = true;
break;
}
}
// Print the elements if they repeat
if (repeat) {
if (flag)
System.out.print(" ");
System.out.print(arr[i]);
flag = true;
}
}
}
if (!flag)
System.out.print(-1);
System.out.println();
}
// Function to find the elements satisfying
// given condition for each query
static void findElements(int[] arr, int N, int Q,
ArrayList<Pair<Integer, Integer>> queries) {
for (int i = 0; i < Q; i++) {
int A = queries.get(i).first;
int B = queries.get(i).second;
// Call the function to print elements in range
printElements(arr, N, A, B);
}
}
public static void main(String[] args) {
int[] arr = {1, 5, 1, 2, 3, 3, 4, 0, 0};
int N = arr.length;
int Q = 2;
ArrayList<Pair<Integer, Integer>> queries = new ArrayList<>();
queries.add(new Pair<>(1, 3));
queries.add(new Pair<>(0, 0));
// Function call
findElements(arr, N, Q, queries);
}
}
Python3
# Function to print elements
def printElements(arr, A, B):
flag = False
for i in range(len(arr)):
if A <= arr[i] <= B:
repeat = False
for j in range(i + 1, len(arr)):
if arr[i] == arr[j]:
repeat = True
break
# Print the elements if it repeats
if repeat:
if flag:
print(" ", end="")
print(arr[i], end="")
flag = True
if not flag:
print(-1)
# Function to find the elements satisfying the given condition for each query
def findElements(arr, queries):
for query in queries:
A, B = query
# Call the function to print elements in the range
printElements(arr, A, B)
print()
# Driver code
if __name__ == "__main__":
arr = [1, 5, 1, 2, 3, 3, 4, 0, 0]
Q = 2
queries = [(1, 3), (0, 0)]
# Function call
findElements(arr, queries)
C#
using System;
using System.Collections.Generic;
class Program
{
// Function to print elements
static void PrintElements(int[] arr, int N, int A, int B)
{
bool flag = false;
for (int i = 0; i < N; i++)
{
if (arr[i] >= A && arr[i] <= B)
{
bool repeat = false;
for (int j = i + 1; j < N; j++)
{
if (arr[i] == arr[j])
{
repeat = true;
break;
}
}
// Print the elements if it repeats
if (repeat)
{
if (flag)
Console.Write(" ");
Console.Write(arr[i]);
flag = true;
}
}
}
if (!flag)
Console.Write(-1);
Console.WriteLine();
}
// Function to find the elements satisfying given condition for each query
static void FindElements(int[] arr, int N, int Q, List<Tuple<int, int>> queries)
{
for (int i = 0; i < Q; i++)
{
int A = queries[i].Item1;
int B = queries[i].Item2;
// Call the function to print elements in range
PrintElements(arr, N, A, B);
}
}
static void Main()
{
int[] arr = { 1, 5, 1, 2, 3, 3, 4, 0, 0 };
int N = arr.Length;
int Q = 2;
List<Tuple<int, int>> queries = new List<Tuple<int, int>>
{
Tuple.Create(1, 3),
Tuple.Create(0, 0)
};
// Function call
FindElements(arr, N, Q, queries);
}
}
JavaScript
// Javascript code for the above approach
// Function to print elements
function printElements(arr, N, A, B) {
let flag = false;
for (let i = 0; i < N; i++) {
if (arr[i] >= A && arr[i] <= B) {
let repeat = false;
for (let j = i + 1; j < N; j++) {
if (arr[i] == arr[j]) {
repeat = true;
break;
}
}
// Print the elements
// if it repeats
if (repeat) {
if (flag)
console.log(" ");
console.log(arr[i].toString());
flag = true;
}
}
}
if (!flag)
console.log("-1");
}
// Function to find the elements
// satisfying given condition for each query
function findElements(arr, N, Q, queries) {
for (let i = 0; i < Q; i++) {
let A = queries[i][0];
let B = queries[i][1];
// function to printing elements in range
printElements(arr, N, A, B);
console.log();
}
}
// Driver code
let arr = [1, 5, 1, 2, 3, 3, 4, 0, 0];
let N = arr.length;
let Q = 2;
let queries = [[1, 3], [0, 0]];
// Function call
findElements(arr, N, Q, queries);
Time Complexity: O(Q * N2)
Auxiliary Space: O(1)
Efficient Approach: An efficient approach is based on the idea of a hash map to store the frequency of all the elements. Follow the steps mentioned below:
- Traverse the hash map, and check if the frequency of an element is greater than 1.
- If yes, then check if the element is present in the range of [A, B] or not.
- If yes, then print it else skip the element.
- Continue the above procedure till all the elements of the hash map are traversed.
Below is the implementation of the above approach.
C++
// C++ code for the above approach.
#include <bits/stdc++.h>
using namespace std;
// Initializing hashmap to store
// Frequency of elements
unordered_map<int, int> freq;
// Function to store frequency of elements in hash map
void storeFrequency(int arr[], int n)
{
// Iterating the array
for (int i = 0; i < n; i++) {
freq[arr[i]]++;
}
}
// Function to print elements
void printElements(int a, int b)
{
// Traversing the hash map
for (auto it = freq.begin(); it != freq.end(); it++) {
// Checking 1st condition if frequency > 1, i.e,
// Element is repetitive
if ((it->second) > 1) {
int value = it->first;
// Checking 2nd condition if element
// Is in range of a and b or not
if (value >= a && value <= b) {
// Printing the value
cout << value << " ";
}
}
}
}
// Function to find the elements
// satisfying given condition for each query
void findElements(int arr[], int N, int Q,
vector<pair<int, int> >& queries)
{
storeFrequency(arr, N);
for (int i = 0; i < Q; i++) {
int A = queries[i].first;
int B = queries[i].second;
printElements(A, B);
cout << endl;
}
}
// Driver code
int main()
{
int arr[] = { 1, 5, 1, 2, 3, 3, 4, 0, 0 };
// Size of array
int N = sizeof(arr) / sizeof(arr[0]);
int Q = 2;
vector<pair<int, int> > queries = { { 1, 3 }, { 0, 0 } };
// Function call
findElements(arr, N, Q, queries);
return 0;
}
Java
// Java code for the above approach.
import java.util.*;
class GFG{
// Initializing hashmap to store
// Frequency of elements
static HashMap<Integer,Integer> freq=new HashMap<Integer,Integer> ();
// Function to store frequency of elements in hash map
static void storeFrequency(int arr[], int n)
{
// Iterating the array
for (int i = 0 ; i < n; i++){
if(freq.containsKey(arr[i])){
freq.put(arr[i], freq.get(arr[i])+1);
}
else{
freq.put(arr[i], 1);
}
}
}
// Function to print elements
static void printElements(int a, int b)
{
// Traversing the hash map
for (Map.Entry<Integer,Integer> it : freq.entrySet()) {
// Checking 1st condition if frequency > 1, i.e,
// Element is repetitive
if ((it.getValue()) > 1) {
int value = it.getKey();
// Checking 2nd condition if element
// Is in range of a and b or not
if (value >= a && value <= b) {
// Printing the value
System.out.print(value+ " ");
}
}
}
}
// Function to find the elements
// satisfying given condition for each query
static void findElements(int arr[], int N, int Q,
int[][] queries)
{
storeFrequency(arr, N);
for (int i = 0; i < Q; i++) {
int A = queries[i][0];
int B = queries[i][1];
printElements(A, B);
System.out.println();
}
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 1, 5, 1, 2, 3, 3, 4, 0, 0 };
// Size of array
int N = arr.length;
int Q = 2;
int [][]queries = { { 1, 3 }, { 0, 0 } };
// Function call
findElements(arr, N, Q, queries);
}
}
// This code contributed by shikhasingrajput
Python3
# Python 3 code for the above approach.
from collections import defaultdict
# Initializing hashmap to store
# Frequency of elements
freq = defaultdict(int)
# Function to store frequency of elements in hash map
def storeFrequency(arr, n):
# Iterating the array
for i in range(n):
freq[arr[i]] += 1
# Function to print elements
def printElements(a, b):
# Traversing the hash map
for it in freq:
# Checking 1st condition if frequency > 1, i.e,
# Element is repetitive
# print("it = ",it)
if ((freq[it]) > 1):
value = it
# Checking 2nd condition if element
# Is in range of a and b or not
if (value >= a and value <= b):
# Printing the value
print(value, end=" ")
# Function to find the elements
# satisfying given condition for each query
def findElements(arr, N, Q,
queries):
storeFrequency(arr, N)
for i in range(Q):
A = queries[i][0]
B = queries[i][1]
printElements(A, B)
print()
# Driver code
if __name__ == "__main__":
arr = [1, 5, 1, 2, 3, 3, 4, 0, 0]
# Size of array
N = len(arr)
Q = 2
queries = [[1, 3], [0, 0]]
# Function call
findElements(arr, N, Q, queries)
# This code is contributed by ukasp.
C#
// C# code for the above approach.
using System;
using System.Collections.Generic;
public class GFG{
// Initializing hashmap to store
// Frequency of elements
static Dictionary<int,int> freq=new Dictionary<int,int> ();
// Function to store frequency of elements in hash map
static void storeFrequency(int []arr, int n)
{
// Iterating the array
for (int i = 0 ; i < n; i++){
if(freq.ContainsKey(arr[i])){
freq[arr[i]]= freq[arr[i]]+1;
}
else{
freq.Add(arr[i], 1);
}
}
}
// Function to print elements
static void printElements(int a, int b)
{
// Traversing the hash map
foreach (KeyValuePair<int,int> it in freq) {
// Checking 1st condition if frequency > 1, i.e,
// Element is repetitive
if ((it.Value) > 1) {
int value = it.Key;
// Checking 2nd condition if element
// Is in range of a and b or not
if (value >= a && value <= b) {
// Printing the value
Console.Write(value+ " ");
}
}
}
}
// Function to find the elements
// satisfying given condition for each query
static void findElements(int []arr, int N, int Q,
int[,] queries)
{
storeFrequency(arr, N);
for (int i = 0; i < Q; i++) {
int A = queries[i,0];
int B = queries[i,1];
printElements(A, B);
Console.WriteLine();
}
}
// Driver code
public static void Main(String[] args)
{
int []arr = { 1, 5, 1, 2, 3, 3, 4, 0, 0 };
// Size of array
int N = arr.Length;
int Q = 2;
int [,]queries = { { 1, 3 }, { 0, 0 } };
// Function call
findElements(arr, N, Q, queries);
}
}
// This code contributed by shikhasingrajput
JavaScript
<script>
// JavaScript code for the above approach.
// Initializing hashmap to store
// Frequency of elements
let freq = new Map();
// Function to store frequency of elements in hash map
function storeFrequency(arr,n)
{
// Iterating the array
for (let i = 0; i < n; i++) {
freq[arr[i]]++;
}
}
// Function to print elements
function printElements(a, b)
{
// Traversing the hash map
for (let [key, val] of freq.values()) {
// Checking 1st condition if frequency > 1, i.e,
// Element is repetitive
if (val > 1) {
let value =key;
// Checking 2nd condition if element
// Is in range of a and b or not
if (value >= a && value <= b) {
// Printing the value
document.write(value + " ");
}
}
}
}
// Function to find the elements
// satisfying given condition for each query
function findElements(arr, N, Q, queries)
{
storeFrequency(arr, N);
for (let i = 0; i < Q; i++) {
let A = queries[i][0];
let B = queries[i][1];
printElements(A, B);
document.write("<br>");
}
}
// Driver code
let arr = [ 1, 5, 1, 2, 3, 3, 4, 0, 0 ];
// Size of array
let N = arr.length;
let Q = 2;
let queries = [ [ 1, 3 ], [ 0, 0 ] ];
// Function call
findElements(arr, N, Q, queries);
// This code is contributed by satwik4409.
</script>
Time Complexity: O(Q*N + N)
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem