Print indices of pair of array elements required to be removed to split array into 3 equal sum subarrays
Last Updated :
24 Mar, 2022
Given an array arr[] consisting of N integers, the task is to print the indices of two array elements required to be removed such that the given array can be split into three subarrays of equal sum. If not possible to do so, then print "-1".
Examples:
Input: arr[] = {2, 5, 12, 7, 19, 4, 3}
Output: 2 4
Explanation:
Removing arr[2] and arr[4] modifies arr[] to {2, 5, 7, 4, 3}.
Sum of subarray {arr[0], arr[1]} = 7.
arr[2] = 7.
Sum of subarray {arr[3], arr[4]} = 7.
Input: arr[] = {2, 1, 13, 5, 14}
Output: -1
Naive Approach: The simplest approach is to generate all possible pairs of array elements and for each pair, check if removal of these pairs can generate three equal sum subarrays from the given array.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if array can
// be split into three equal sum
// subarrays by removing two elements
void findSplit(int arr[], int N)
{
for (int l = 1; l <= N - 4; l++) {
for (int r = l + 2; r <= N - 2; r++) {
// Stores sum of all three subarrays
int lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
for (int i = 0; i <= l - 1; i++) {
lsum += arr[i];
}
// Sum of middle subarray
for (int i = l + 1; i <= r - 1; i++) {
msum += arr[i];
}
// Sum of right subarray
for (int i = r + 1; i < N; i++) {
rsum += arr[i];
}
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
cout << l << " " << r << endl;
return;
}
}
}
// If no pair exists, print -1
cout << -1 << endl;
}
// Driver code
int main()
{
// Given array
int arr[] = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = sizeof(arr) / sizeof(arr[0]);
findSplit(arr, N);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG
{
// Function to check if array can
// be split into three equal sum
// subarrays by removing two elements
static void findSplit(int arr[], int N)
{
for (int l = 1; l <= N - 4; l++)
{
for (int r = l + 2; r <= N - 2; r++)
{
// Stores sum of all three subarrays
int lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
for (int i = 0; i <= l - 1; i++) {
lsum += arr[i];
}
// Sum of middle subarray
for (int i = l + 1; i <= r - 1; i++) {
msum += arr[i];
}
// Sum of right subarray
for (int i = r + 1; i < N; i++) {
rsum += arr[i];
}
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
System.out.println( l + " " + r );
return;
}
}
}
// If no pair exists, print -1
System.out.print(-1 );
}
// Driver Code
public static void main(String[] args)
{
// Given array
int arr[] = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = arr.length;
findSplit(arr, N);
}
}
// This code is contributed by sanjoy_62.
Python3
# Python 3 program for the above approach
# Function to check if array can
# be split into three equal sum
# subarrays by removing two elements
def findSplit(arr, N):
for l in range(1, N - 3, 1):
for r in range(l + 2, N - 1, 1):
# Stores sum of all three subarrays
lsum = 0
rsum = 0
msum = 0
# Sum of left subarray
for i in range(0, l, 1):
lsum += arr[i]
# Sum of middle subarray
for i in range(l + 1, r, 1):
msum += arr[i]
# Sum of right subarray
for i in range(r + 1, N, 1):
rsum += arr[i]
# Check if sum of subarrays are equal
if (lsum == rsum and rsum == msum):
# Print the possible pair
print(l, r)
return
# If no pair exists, print -1
print(-1)
# Driver code
if __name__ == '__main__':
# Given array
arr = [2, 5, 12, 7, 19, 4, 3]
# Size of the array
N = len(arr)
findSplit(arr, N)
# This code is contributed by SURENDRA_GANGWAR.
C#
// C# program for the above approach
using System;
class GFG
{
// Function to check if array can
// be split into three equal sum
// subarrays by removing two elements
static void findSplit(int []arr, int N)
{
for (int l = 1; l <= N - 4; l++)
{
for (int r = l + 2; r <= N - 2; r++)
{
// Stores sum of all three subarrays
int lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
for (int i = 0; i <= l - 1; i++) {
lsum += arr[i];
}
// Sum of middle subarray
for (int i = l + 1; i <= r - 1; i++) {
msum += arr[i];
}
// Sum of right subarray
for (int i = r + 1; i < N; i++) {
rsum += arr[i];
}
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
Console.WriteLine( l + " " + r );
return;
}
}
}
// If no pair exists, print -1
Console.Write(-1 );
}
// Driver Code
public static void Main(string[] args)
{
// Given array
int []arr = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = arr.Length;
findSplit(arr, N);
}
}
// This code is contributed by AnkThon
JavaScript
<script>
// JavaScript program for the above approach
// Function to check if array can
// be split into three equal sum
// subarrays by removing two elements
function findSplit(arr, N)
{
for (let l = 1; l <= N - 4; l++)
{
for (let r = l + 2; r <= N - 2; r++)
{
// Stores sum of all three subarrays
let lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
for (let i = 0; i <= l - 1; i++) {
lsum += arr[i];
}
// Sum of middle subarray
for (let i = l + 1; i <= r - 1; i++) {
msum += arr[i];
}
// Sum of right subarray
for (let i = r + 1; i < N; i++) {
rsum += arr[i];
}
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
document.write( l + " " + r + "</br>");
return;
}
}
}
// If no pair exists, print -1
document.write(-1 );
}
// Given array
let arr = [ 2, 5, 12, 7, 19, 4, 3 ];
// Size of the array
let N = arr.length;
findSplit(arr, N);
</script>
Time Complexity: O(N3)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use Prefix Sum array technique to find all subarray sums in constant time. Follow the steps below to solve the problem:
- Initialize a vector sum of size N to store the prefix sum of the array.
- Initialize two variables, say l & r, to store the two indexes which are to be dropped in order to split the array into 3 equal sum subarrays.
- Sum of the three subarrays would be sum[l - 1], sum[r - 1] - sum[l] and sum[N - 1] - sum[r].
- Iterate over the range [1, N - 4] using a variable l:
- Iterate over the range [l + 2, N - 2] using variable r and check if at any point, left subarray sum is equal to middle subarray sum and right subarray sum, then print the values of l & r and return.
- If no such pair exists, print -1.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
void findSplit(int arr[], int N)
{
// Stores prefix sum array
vector<int> sum(N);
// Copy array elements
for (int i = 0; i < N; i++) {
sum[i] = arr[i];
}
// Traverse the array
for (int i = 1; i < N; i++) {
sum[i] += sum[i - 1];
}
for (int l = 1; l <= N - 4; l++) {
for (int r = l + 2; r <= N - 2; r++) {
// Stores sums of all three subarrays
int lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
cout << l << " " << r << endl;
return;
}
}
}
// If no such pair exists, print -1
cout << -1 << endl;
}
// Driver Code
int main()
{
// Given array
int arr[] = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = sizeof(arr) / sizeof(arr[0]);
findSplit(arr, N);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG
{
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
static void findSplit(int arr[], int N)
{
// Stores prefix sum array
int []sum = new int[N];
// Copy array elements
for (int i = 0; i < N; i++)
{
sum[i] = arr[i];
}
// Traverse the array
for (int i = 1; i < N; i++)
{
sum[i] += sum[i - 1];
}
for (int l = 1; l <= N - 4; l++) {
for (int r = l + 2; r <= N - 2; r++) {
// Stores sums of all three subarrays
int lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
System.out.print(l+ " " + r +"\n");
return;
}
}
}
// If no such pair exists, print -1
System.out.print(-1 +"\n");
}
// Driver Code
public static void main(String[] args)
{
// Given array
int arr[] = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = arr.length;
findSplit(arr, N);
}
}
// This code is contributed by shikhasingrajput
Python3
# Python3 program for the above approach
# Function to check if array can
# be split into three equal sum
# subarrays by removing a pair
def findSplit(arr, N):
# Stores prefix sum array
sum = [i for i in arr]
# Traverse the array
for i in range(1, N):
sum[i] += sum[i - 1]
for l in range(1, N - 3):
for r in range(l + 2, N - 1):
# Stores sums of all three subarrays
lsum , rsum , msum =0, 0, 0
# Sum of left subarray
lsum = sum[l - 1]
# Sum of middle subarray
msum = sum[r - 1] - sum[l]
# Sum of right subarray
rsum = sum[N - 1] - sum[r]
# Check if sum of subarrays are equal
if (lsum == rsum and rsum == msum):
# Print possible pair
print(l, r)
return
# If no such pair exists, print -1
print (-1)
# Driver Code
if __name__ == '__main__':
# Given array
arr = [2, 5, 12, 7, 19, 4, 3 ]
# Size of the array
N = len(arr)
findSplit(arr, N)
# This code is contributed by mohit kumar 29.
C#
// C# program for the above approach
using System;
public class GFG
{
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
static void findSplit(int []arr, int N)
{
// Stores prefix sum array
int []sum = new int[N];
// Copy array elements
for (int i = 0; i < N; i++)
{
sum[i] = arr[i];
}
// Traverse the array
for (int i = 1; i < N; i++)
{
sum[i] += sum[i - 1];
}
for (int l = 1; l <= N - 4; l++) {
for (int r = l + 2; r <= N - 2; r++) {
// Stores sums of all three subarrays
int lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
Console.Write(l+ " " + r +"\n");
return;
}
}
}
// If no such pair exists, print -1
Console.Write(-1 +"\n");
}
// Driver Code
public static void Main(String[] args)
{
// Given array
int []arr = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = arr.Length;
findSplit(arr, N);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript program for the above approach
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
function findSplit(arr, N)
{
// Stores prefix sum array
let sum = new Array(N);
// Copy array elements
for (let i = 0; i < N; i++)
{
sum[i] = arr[i];
}
// Traverse the array
for (let i = 1; i < N; i++)
{
sum[i] += sum[i - 1];
}
for (let l = 1; l <= N - 4; l++) {
for (let r = l + 2; r <= N - 2; r++) {
// Stores sums of all three subarrays
let lsum = 0, rsum = 0, msum = 0;
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Check if sum of subarrays are equal
if (lsum == rsum && rsum == msum) {
// Print the possible pair
document.write(l+ " " + r +"</br>");
return;
}
}
}
// If no such pair exists, print -1
document.write(-1 +"</br>");
}
// Given array
let arr = [ 2, 5, 12, 7, 19, 4, 3 ];
// Size of the array
let N = arr.length;
findSplit(arr, N);
</script>
Time Complexity: O(N2)
Auxiliary Space: O(N)
Most Optimal Approach: The most optimal idea is to make use of the two-pointer technique along with the use of Prefix Sum. Follow the steps below to solve the problem:
- Initialize a vector of size N to store the prefix sum of the array.
- Initialize two variables, say l & r, to traverse the array using the two-pointer approach.
- Traverse the array till l < r or until either all three sums become equal:
- If the sum of the left subarray is greater than the sum of the right subarray, add an extra element to the right subarray. Therefore, reducing the value of r by 1.
- If the sum of the right subarray is greater than the sum of the left subarray, add an element to the left subarray. Therefore, increasing l by 1.
- If both the sum of left and right subarrays are equal, but not equal to the sum of the middle subarray increase l by 1 and reduce r by 1.
- If no such pair exists, print -1.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
void findSplit(int arr[], int N)
{
// Two pointers l and r
int l = 1, r = N - 2;
int lsum, msum, rsum;
// Stores prefix sum array
vector<int> sum(N);
sum[0] = arr[0];
// Traverse the array
for (int i = 1; i < N; i++) {
sum[i] = sum[i - 1] + arr[i];
}
// Two pointer approach
while (l < r) {
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Print split indices if sum is equal
if (lsum == msum and msum == rsum) {
cout << l << " " << r << endl;
return;
}
// Move left pointer if lsum < rsum
if (lsum < rsum)
l++;
// Move right pointer if rsum > lsum
else if (lsum > rsum)
r--;
// Move both pointers if lsum = rsum
// but they are not equal to msum
else {
l++;
r--;
}
}
// If no possible pair exists, print -1
cout << -1 << endl;
}
// Driver Code
int main()
{
// Given array
int arr[] = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = sizeof(arr) / sizeof(arr[0]);
findSplit(arr, N);
return 0;
}
Java
// Java program for the above approach
public class GFG
{
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
static void findSplit(int []arr, int N)
{
// Two pointers l and r
int l = 1, r = N - 2;
int lsum, msum, rsum;
// Stores prefix sum array
int sum[] = new int[N];
sum[0] = arr[0];
// Traverse the array
for (int i = 1; i < N; i++) {
sum[i] = sum[i - 1] + arr[i];
}
// Two pointer approach
while (l < r) {
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Print split indices if sum is equal
if (lsum == msum && msum == rsum) {
System.out.println(l + " " + r);
return;
}
// Move left pointer if lsum < rsum
if (lsum < rsum)
l++;
// Move right pointer if rsum > lsum
else if (lsum > rsum)
r--;
// Move both pointers if lsum = rsum
// but they are not equal to msum
else {
l++;
r--;
}
}
// If no possible pair exists, print -1
System.out.println(-1);
}
// Driver Code
public static void main (String[] args)
{
// Given array
int []arr = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = arr.length;
findSplit(arr, N);
}
}
// This code is contributed by AnkThon
Python3
# Python3 program for the above approach
# Function to check if array can
# be split into three equal sum
# subarrays by removing a pair
def findSplit(arr, N) :
# Two pointers l and r
l = 1; r = N - 2;
# Stores prefix sum array
sum = [0]*N;
sum[0] = arr[0];
# Traverse the array
for i in range(1, N) :
sum[i] = sum[i - 1] + arr[i];
# Two pointer approach
while (l < r) :
# Sum of left subarray
lsum = sum[l - 1];
# Sum of middle subarray
msum = sum[r - 1] - sum[l];
# Sum of right subarray
rsum = sum[N - 1] - sum[r];
# Print split indices if sum is equal
if (lsum == msum and msum == rsum) :
print(l,r);
return;
# Move left pointer if lsum < rsum
if (lsum < rsum) :
l += 1;
# Move right pointer if rsum > lsum
elif (lsum > rsum) :
r -= 1;
# Move both pointers if lsum = rsum
# but they are not equal to msum
else :
l += 1;
r -= 1;
# If no possible pair exists, print -1
print(-1);
# Driver Code
if __name__ == "__main__" :
# Given array
arr = [ 2, 5, 12, 7, 19, 4, 3 ];
# Size of the array
N = len(arr);
findSplit(arr, N);
# This code is contributed by AnkThon
C#
// C# program for the above approach
using System;
class GFG {
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
static void findSplit(int[] arr, int N)
{
// Two pointers l and r
int l = 1, r = N - 2;
int lsum, msum, rsum;
// Stores prefix sum array
int[] sum = new int[N];
sum[0] = arr[0];
// Traverse the array
for (int i = 1; i < N; i++) {
sum[i] = sum[i - 1] + arr[i];
}
// Two pointer approach
while (l < r) {
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Print split indices if sum is equal
if (lsum == msum && msum == rsum) {
Console.Write(l + " " + r);
return;
}
// Move left pointer if lsum < rsum
if (lsum < rsum)
l++;
// Move right pointer if rsum > lsum
else if (lsum > rsum)
r--;
// Move both pointers if lsum = rsum
// but they are not equal to msum
else {
l++;
r--;
}
}
// If no possible pair exists, print -1
Console.Write(-1);
}
static void Main()
{
// Given array
int[] arr = { 2, 5, 12, 7, 19, 4, 3 };
// Size of the array
int N = arr.Length;
findSplit(arr, N);
}
}
// This code is contributed by rameshtravel07.
JavaScript
<script>
// JavaScript program for the above approach
// Function to check if array can
// be split into three equal sum
// subarrays by removing a pair
function findSplit(arr, N)
{
// Two pointers l and r
let l = 1, r = N - 2;
let lsum, msum, rsum;
// Stores prefix sum array
let sum = new Array(N);
sum[0] = arr[0];
// Traverse the array
for (let i = 1; i < N; i++) {
sum[i] = sum[i - 1] + arr[i];
}
// Two pointer approach
while (l < r) {
// Sum of left subarray
lsum = sum[l - 1];
// Sum of middle subarray
msum = sum[r - 1] - sum[l];
// Sum of right subarray
rsum = sum[N - 1] - sum[r];
// Print split indices if sum is equal
if (lsum == msum && msum == rsum) {
document.write(l + " " + r);
return;
}
// Move left pointer if lsum < rsum
if (lsum < rsum)
l++;
// Move right pointer if rsum > lsum
else if (lsum > rsum)
r--;
// Move both pointers if lsum = rsum
// but they are not equal to msum
else {
l++;
r--;
}
}
// If no possible pair exists, print -1
document.write(-1);
}
// Given array
let arr = [ 2, 5, 12, 7, 19, 4, 3 ];
// Size of the array
let N = arr.length;
findSplit(arr, N);
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Similar Reads
Count ways to split array into two equal sum subarrays by replacing each array element to 0 once
Given an array arr[] consisting of N integers, the task is to count the number of ways to split the array into two subarrays of equal sum after changing a single array element to 0. Examples: Input: arr[] = {1, 2, -1, 3}Output: 4Explanation: Replacing arr[0] by 0, arr[] is modified to {0, 2, -1, 3}.
11 min read
Count ways to split array into two equal sum subarrays by changing sign of any one array element
Given an array arr[] consisting of N integers, the task is to count ways to split array into two subarrays of equal sum by changing the sign of any one array element. Examples: Input: arr[] = {2, 2, -3, 3}Output: 2Explanation:Changing arr[0] = 2 to arr[0] = -2, the array becomes {-2, 2, -3, 3}. Only
11 min read
Find array elements equal to sum of any subarray of at least size 2
Given an array arr[], the task is to find the elements from the array which are equal to the sum of any sub-array of size greater than 1.Examples: Input: arr[] = {1, 2, 3, 4, 5, 6} Output: 3, 5, 6 Explanation: The elements 3, 5, 6 are equal to sum of subarrays {1, 2},{2, 3} and {1, 2, 3} respectivel
6 min read
Split an Array A[] into Subsets having equal Sum and sizes equal to elements of Array B[]
Given an array A[] consisting of N integers, the task is to split the array A[] into subsets having equal sum and of length equal to elements in array B[]. Examples: Input: A[] = {17, 13, 21, 20, 50, 29}, B[] = {2, 3, 1} Output: 21 29 17 13 20 50 Input: A[] = { 1, 2, 3, 4, 5, 6}, B[] = { 2, 2, 2} Ou
8 min read
Minimum prime numbers required to be subtracted to make all array elements equal
Given an array arr[] consisting of N positive integers, the task is to find the minimum number of primes numbers required to be subtracted from the array elements to make all array elements equal. Examples: Input: arr[]= {7, 10, 4, 5}Output: 5Explanation: Following subtraction of primes numbers make
12 min read
Length of smallest subarray to be removed to make sum of remaining elements divisible by K
Given an array arr[] of integers and an integer K, the task is to find the length of the smallest subarray that needs to be removed such that the sum of remaining array elements is divisible by K. Removal of the entire array is not allowed. If it is impossible, then print "-1". Examples: Input: arr[
11 min read
Number of times an array can be partitioned repetitively into two subarrays with equal sum
Given an array arr[] of size N, the task is to find the number of times the array can be partitioned repetitively into two subarrays such that the sum of the elements of both the subarrays is the same. Examples: Input: arr[] = { 2, 2, 2, 2 } Output: 3 Explanation: 1. Make the first partition after i
8 min read
Find an element in array such that sum of left array is equal to sum of right array
Given, an array of size n. Find an element that divides the array into two sub-arrays with equal sums. Examples: Input: 1 4 2 5 0Output: 2Explanation: If 2 is the partition, subarrays are : [1, 4] and [5] Input: 2 3 4 1 4 5Output: 1Explanation: If 1 is the partition, Subarrays are : [2, 3, 4] and [4
15+ min read
Minimum pairs required to be removed such that the array does not contain any pair with sum K
Given an array arr[] of size N and an integer K, the task is to find the minimum count of pairs required to be removed such that no pair exists in the array whose sum of elements is equal to K. Examples: Input: arr[] = { 3, 1, 3, 4, 3 }, K = 6 Output: 1 Explanation: Removing the pair (arr[0], arr[2]
7 min read
Size of smallest subarray to be removed to make count of array elements greater and smaller than K equal
Given an integer K and an array arr[] consisting of N integers, the task is to find the length of the subarray of smallest possible length to be removed such that the count of array elements smaller than and greater than K in the remaining array are equal. Examples: Input: arr[] = {5, 7, 2, 8, 7, 4,
10 min read