Open In App

Printing all subsets of {1,2,3,...n} without using array or loop

Last Updated : 12 Sep, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a natural number n, print all the subsets of the set \{1, 2, 3, ..., n\}   without using any array or loop (only the use of recursion is allowed).
Examples: 
 

Input : n = 4
Output : { 1 2 3 4 }
         { 1 2 3 }
         { 1 2 4 }
         { 1 2 }
         { 1 3 4 }
         { 1 3 }
         { 1 4 }
         { 1 }
         { 2 3 4 }
         { 2 3 }
         { 2 4 }
         { 2 }
         { 3 4 }
         { 3 }
         { 4 }
         { }

Input : n = 2
Output : { 1 2 }
         { 1 }
         { 2 }
         { }


 


Approach:
 

  • Start from num = 2^n - 1   upto 0.
  • Consider the binary representation of num with n bits.
  • Start from the leftmost bit which represents 1, the second bit represents 2, and so on until nth bit which represents n.
  • Print the number corresponding to the bit if it is set.
  • Perform the above steps for all values of num until it is equal to 0.


Let's understand the above approach through an example:
Considering input n = 4, start from num = 2^n - 1 = 15   .
 


 


 


and so on ... until num = 0.
Below is the implementation of the above approach: 
 

C++
// C++ code to print all subsets
// of {1, 2, 3, n} without using
// array or loop, just recursion.
#include <bits/stdc++.h>
using namespace std;

void subset(int, int, int);

// This recursive function calls subset
// function to print the subsets one by one.
// numBits --> number of bits needed to
// represent the number (simply input value n).
// num --> Initially equal to 2 ^ n - 1 and
// decreases by 1 every recursion until 0.
void printSubsets(int numOfBits, int num) 
{
    if (num >= 0)
    {
        cout << "{ ";

        // Print the subset corresponding to
        // binary representation of num.
        subset(numOfBits - 1, num, numOfBits);
        cout << "}" << endl;

        // Call the function recursively to
        // print the next subset.
        printSubsets(numOfBits, num - 1);
    }
    else
        return;
}

// This function recursively prints the
// subset corresponding to the binary
// representation of num.
// nthBit --> nth bit from right side
// starting from n and decreases until 0
void subset(int nthBit, int num, int numOfBits)
{
    if (nthBit >= 0) 
    {
        // Print number in given subset only
        // if the bit corresponding to it
        // is set in num.
        if (num & (1 << nthBit)) 
        {
            cout << numOfBits - nthBit << " ";
        }

        // Check for the next bit
        subset(nthBit - 1, num, numOfBits);
    } 
    else
        return;
}

// Driver Code
int main()
{
    int n = 4;
    printSubsets(n, pow(2, n) - 1);
}

// This code is contributed by
// sanjeev2552
Java
// Java code to print all subsets 
// of {1, 2, 3, n} without using
// array or loop, just recursion.
class GfG 
{

    // This recursive function calls subset
    // function to print the subsets one by one. 
    // numBits --> number of bits needed to 
    // represent the number (simply input value n).
    // num --> Initially equal to 2 ^ n - 1 and 
    // decreases by 1 every recursion until 0.
    static void printSubSets(int numOfBits, int num) 
    {
        if (num >= 0) 
        {
            System.out.print("{ ");
            
            // Print the subset corresponding to 
            // binary representation of num.
            subset(numOfBits - 1, num, numOfBits);
            System.out.println("}");
            
            // Call the function recursively to 
            // print the next subset.
            printSubSets(numOfBits, num - 1);

        } else
            return;
    }

    // This function recursively prints the 
    // subset corresponding to the binary 
    // representation of num.
    // nthBit --> nth bit from right side 
    // starting from n and decreases until 0.
    static void subset(int nthBit, int num, int numOfBits) 
    {
        if (nthBit >= 0) 
        {
            // Print number in given subset only
            // if the bit corresponding to it 
            // is set in num.
            if ((num & (1 << nthBit)) != 0)
            {
                System.out.print(numOfBits - nthBit + " ");

            }
            
            // Check for the next bit 
            subset(nthBit - 1, num, numOfBits);
        } else
            return;
    }
    
    // Driver code
    public static void main(String[] args) 
    {
        int n = 4;
        printSubSets(n, (int) (Math.pow(2, n)) -1);
    }
}

// This code is contributed by laststringx
Python3
# Python3 code to print all subsets 
# of {1, 2, 3, …n} without using
# array or loop, just recursion.

# This recursive function calls subset
# function to print the subsets one by one. 
# numBits --> number of bits needed to 
# represent the number (simply input value n).
# num --> Initially equal to 2 ^ n - 1 and 
# decreases by 1 every recursion until 0.
def printSubsets(numOfBits, num):
    
    if num >= 0:
        print("{", end = " ")

        # Print the subset corresponding to 
        # binary representation of num.
        subset(numOfBits-1, num, numOfBits)
        print("}")

        # Call the function recursively to 
        # print the next subset.
        printSubsets(numOfBits, num-1)
        
    else:
        return

# This function recursively prints the 
# subset corresponding to the binary 
# representation of num.
# nthBit --> nth bit from right side 
# starting from n and decreases until 0.
def subset(nthBit, num, numOfBits):
    
    if nthBit >= 0:
        
        # Print number in given subset only
        # if the bit corresponding to it 
        # is set in num.
        if num & (1 << nthBit) != 0:
            print(numOfBits - nthBit, end = " ")
        
        # Check for the next bit 
        subset(nthBit-1, num, numOfBits)
        
    else:
        return

# Driver Code    
n = 4
printSubsets(n, 2**n - 1)
C#
// C# code to print all subsets 
// of {1, 2, 3, n} without using 
// array or loop, just recursion.
using System;

class GfG 
{ 

    // This recursive function calls subset 
    // function to print the subsets one by one. 
    // numBits --> number of bits needed to 
    // represent the number (simply input value n). 
    // num --> Initially equal to 2 ^ n - 1 and 
    // decreases by 1 every recursion until 0. 
    static void printSubSets(int numOfBits, int num) 
    { 
        if (num >= 0) 
        { 
            Console.Write("{ "); 
            
            // Print the subset corresponding to 
            // binary representation of num. 
            subset(numOfBits - 1, num, numOfBits); 
            Console.WriteLine("}"); 
            
            // Call the function recursively to 
            // print the next subset. 
            printSubSets(numOfBits, num - 1); 

        } else
            return; 
    } 

    // This function recursively prints the 
    // subset corresponding to the binary 
    // representation of num. 
    // nthBit --> nth bit from right side 
    // starting from n and decreases until 0. 
    static void subset(int nthBit, int num, int numOfBits) 
    { 
        if (nthBit >= 0) 
        { 
            // Print number in given subset only 
            // if the bit corresponding to it 
            // is set in num. 
            if ((num & (1 << nthBit)) != 0) 
            { 
                Console.Write(numOfBits - nthBit + " "); 

            } 
            
            // Check for the next bit 
            subset(nthBit - 1, num, numOfBits); 
        } else
            return; 
    } 
    
    // Driver codeM
    public static void Main(String[] args) 
    { 
        int n = 4; 
        printSubSets(n, (int) (Math.Pow(2, n)) -1); 
    } 
}

// This code is contributed by Srathore
JavaScript
<script>

// Javascript code to print all subsets
// of {1, 2, 3, n} without using
// array or loop, just recursion.

// This recursive function calls subset
// function to print the subsets one by one.
// numBits --> number of bits needed to
// represent the number (simply input value n).
// num --> Initially equal to 2 ^ n - 1 and
// decreases by 1 every recursion until 0.
function printSubsets(numOfBits, num) 
{
    if (num >= 0)
    {
        document.write( "{ ");

        // Print the subset corresponding to
        // binary representation of num.
        subset(numOfBits - 1, num, numOfBits);
        document.write( "}<br>" );

        // Call the function recursively to
        // print the next subset.
        printSubsets(numOfBits, num - 1);
    }
    else
        return;
}

// This function recursively prints the
// subset corresponding to the binary
// representation of num.
// nthBit --> nth bit from right side
// starting from n and decreases until 0
function subset(nthBit, num, numOfBits)
{
    if (nthBit >= 0) 
    {
        // Print number in given subset only
        // if the bit corresponding to it
        // is set in num.
        if (num & (1 << nthBit)) 
        {
            document.write( numOfBits - nthBit + " ");
        }

        // Check for the next bit
        subset(nthBit - 1, num, numOfBits);
    } 
    else
        return;
}

// Driver Code
var n = 4;
printSubsets(n, Math.pow(2, n) - 1);

</script>  

Output: 
{ 1 2 3 4 }
{ 1 2 3 }
{ 1 2 4 }
{ 1 2 }
{ 1 3 4 }
{ 1 3 }
{ 1 4 }
{ 1 }
{ 2 3 4 }
{ 2 3 }
{ 2 4 }
{ 2 }
{ 3 4 }
{ 3 }
{ 4 }
{ }

 

Time Complexity: O(n*2^n)   

Auxiliary Space: O(n) for call stack
 


Next Article

Similar Reads