Python | Numpy np.polyvander3d() method Last Updated : 31 Dec, 2019 Comments Improve Suggest changes Like Article Like Report np.polyvander3d() method is used to returns the Vandermonde matrix of degree deg and sample points x, y and z. Syntax : np.polyvander3d(x, y, z, deg) Parameters: x, y, z :[ array_like ] Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array. deg :[int] Degree of the resulting matrix. Return : Return the Vandermonde matrix. Example #1 : In this example we can see that by using np.polyvander3d() method, we are able to get the pseudo-vandermonde matrix using this method. Python3 1=1 # import numpy import numpy as np import numpy.polynomial.polynomial as geek # using np.polyvander3d() method ans = geek.polyvander3d((1, 3, 5), (2, 4, 6), (1, 2, 3), [2, 2, 2]) print(ans) Output : [[ 1.00000000e+00 1.00000000e+00 1.00000000e+00 2.00000000e+00 2.00000000e+00 2.00000000e+00 4.00000000e+00 4.00000000e+00 4.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 2.00000000e+00 2.00000000e+00 2.00000000e+00 4.00000000e+00 4.00000000e+00 4.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 2.00000000e+00 2.00000000e+00 2.00000000e+00 4.00000000e+00 4.00000000e+00 4.00000000e+00] [ 1.00000000e+00 2.00000000e+00 4.00000000e+00 4.00000000e+00 8.00000000e+00 1.60000000e+01 1.60000000e+01 3.20000000e+01 6.40000000e+01 3.00000000e+00 6.00000000e+00 1.20000000e+01 1.20000000e+01 2.40000000e+01 4.80000000e+01 4.80000000e+01 9.60000000e+01 1.92000000e+02 9.00000000e+00 1.80000000e+01 3.60000000e+01 3.60000000e+01 7.20000000e+01 1.44000000e+02 1.44000000e+02 2.88000000e+02 5.76000000e+02] [ 1.00000000e+00 3.00000000e+00 9.00000000e+00 6.00000000e+00 1.80000000e+01 5.40000000e+01 3.60000000e+01 1.08000000e+02 3.24000000e+02 5.00000000e+00 1.50000000e+01 4.50000000e+01 3.00000000e+01 9.00000000e+01 2.70000000e+02 1.80000000e+02 5.40000000e+02 1.62000000e+03 2.50000000e+01 7.50000000e+01 2.25000000e+02 1.50000000e+02 4.50000000e+02 1.35000000e+03 9.00000000e+02 2.70000000e+03 8.10000000e+03]] Example #2 : Python3 1=1 # import numpy import numpy as np import numpy.polynomial.polynomial as geek ans = geek.polyvander3d((1, 2), (3, 4), (5, 6), [3, 3, 3]) print(ans) Output : [[ 1.00000000e+00 5.00000000e+00 2.50000000e+01 1.25000000e+02 3.00000000e+00 1.50000000e+01 7.50000000e+01 3.75000000e+02 9.00000000e+00 4.50000000e+01 2.25000000e+02 1.12500000e+03 2.70000000e+01 1.35000000e+02 6.75000000e+02 3.37500000e+03 1.00000000e+00 5.00000000e+00 2.50000000e+01 1.25000000e+02 3.00000000e+00 1.50000000e+01 7.50000000e+01 3.75000000e+02 9.00000000e+00 4.50000000e+01 2.25000000e+02 1.12500000e+03 2.70000000e+01 1.35000000e+02 6.75000000e+02 3.37500000e+03 1.00000000e+00 5.00000000e+00 2.50000000e+01 1.25000000e+02 3.00000000e+00 1.50000000e+01 7.50000000e+01 3.75000000e+02 9.00000000e+00 4.50000000e+01 2.25000000e+02 1.12500000e+03 2.70000000e+01 1.35000000e+02 6.75000000e+02 3.37500000e+03 1.00000000e+00 5.00000000e+00 2.50000000e+01 1.25000000e+02 3.00000000e+00 1.50000000e+01 7.50000000e+01 3.75000000e+02 9.00000000e+00 4.50000000e+01 2.25000000e+02 1.12500000e+03 2.70000000e+01 1.35000000e+02 6.75000000e+02 3.37500000e+03] [ 1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02 4.00000000e+00 2.40000000e+01 1.44000000e+02 8.64000000e+02 1.60000000e+01 9.60000000e+01 5.76000000e+02 3.45600000e+03 6.40000000e+01 3.84000000e+02 2.30400000e+03 1.38240000e+04 2.00000000e+00 1.20000000e+01 7.20000000e+01 4.32000000e+02 8.00000000e+00 4.80000000e+01 2.88000000e+02 1.72800000e+03 3.20000000e+01 1.92000000e+02 1.15200000e+03 6.91200000e+03 1.28000000e+02 7.68000000e+02 4.60800000e+03 2.76480000e+04 4.00000000e+00 2.40000000e+01 1.44000000e+02 8.64000000e+02 1.60000000e+01 9.60000000e+01 5.76000000e+02 3.45600000e+03 6.40000000e+01 3.84000000e+02 2.30400000e+03 1.38240000e+04 2.56000000e+02 1.53600000e+03 9.21600000e+03 5.52960000e+04 8.00000000e+00 4.80000000e+01 2.88000000e+02 1.72800000e+03 3.20000000e+01 1.92000000e+02 1.15200000e+03 6.91200000e+03 1.28000000e+02 7.68000000e+02 4.60800000e+03 2.76480000e+04 5.12000000e+02 3.07200000e+03 1.84320000e+04 1.10592000e+05]] Comment More infoAdvertise with us Next Article Python | Numpy np.polygrid3d() method J jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-Mathematical Function Practice Tags : python Similar Reads Python | Numpy np.polyvander() method np.polyvander() method is used to returns the Vandermonde matrix of degree deg and sample points x. Syntax : np.polyvander(x, deg) Parameters: x :[ array_like ] Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is 1 min read Python | Numpy np.polyvander() method np.polyvander() method is used to returns the Vandermonde matrix of degree deg and sample points x. Syntax : np.polyvander(x, deg) Parameters: x :[ array_like ] Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is 1 min read Python | Numpy np.polyvander2d() method With the help of np.polyvander2d() method, we can get the Pseudo-Vandermonde matrix from given array having degree which is passed as parameter by using np.polyvander2d() method. Syntax : np.polyvander2d(x, y, deg) Parameters: x, y :[ array_like ] Array of points. The dtype is converted to float64 o 2 min read Python | Numpy np.polyvander2d() method With the help of np.polyvander2d() method, we can get the Pseudo-Vandermonde matrix from given array having degree which is passed as parameter by using np.polyvander2d() method. Syntax : np.polyvander2d(x, y, deg) Parameters: x, y :[ array_like ] Array of points. The dtype is converted to float64 o 2 min read Python | Numpy np.polygrid3d() method np.polygrid3d() method is used to evaluate a 3-D polynomial series on the Cartesian product of x, y and z. Syntax : np.polygrid3d(x, y, z, c) Parameters: x, y, z :[array_like]The three dimensional series is evaluated at the points in the Cartesian product of x, y and z. If x or y or z is a list or t 2 min read Python | Numpy np.polygrid3d() method np.polygrid3d() method is used to evaluate a 3-D polynomial series on the Cartesian product of x, y and z. Syntax : np.polygrid3d(x, y, z, c) Parameters: x, y, z :[array_like]The three dimensional series is evaluated at the points in the Cartesian product of x, y and z. If x or y or z is a list or t 2 min read Like