Open In App

Python | Pandas Index.inferred_type

Last Updated : 27 Feb, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
Pandas Index is an immutable ndarray implementing an ordered, sliceable set. It is the basic object which stores the axis labels for all pandas objects. Pandas Index.inferred_type attribute return a string of the data type inferred from the values of the given Index object.
Syntax: Index.inferred_type Parameter : None Returns : inferred_type
Example #1: Use Index.inferred_type attribute to find out the inferred data type of the value in the given Index object. Python3
# importing pandas as pd
import pandas as pd

# Creating the index
idx = pd.Index(['Jan', 'Feb', 'Mar', 'Apr', 'May'])

# Print the index
print(idx)
Output :
Index(['Jan', 'Feb', 'Mar', 'Apr', 'May'], dtype='object')
Now we will use Index.inferred_type attribute to find out the inferred dtype of the underlying data of the given Index object. Python3 1==
# return the inferred dtype
result = idx.inferred_type

# Print the result
print(result)
Output :
mixed
As we can see in the output, the Index.inferred_type attribute has returned String as the inferred data type of the given Index object. Example #2 : Use Index.inferred_type attribute to find out the inferred data type of the value in the given Index object. Python3
# importing pandas as pd
import pandas as pd

# Creating the index
idx = pd.Index(['2012-12-12', None, '2002-1-10', None])

# Print the index
print(idx)
Output :
Index(['2012-12-12', None, '2002-1-10', None], dtype='object')
Now we will use Index.inferred_type attribute to find out the inferred dtype of the underlying data of the given Index object. Python3 1==
# return the inferred dtype
result = idx.inferred_type

# Print the result
print(result)
Output :
mixed
As we can see in the output, the Index.inferred_type attribute has returned mixed as the inferred data type of the given Index object.

Next Article
Practice Tags :

Similar Reads