Python | Tensorflow log() method
Last Updated :
13 Dec, 2021
Tensorflow is an open-source machine learning library developed by Google. One of its applications is to develop deep neural networks.
The module tensorflow.math provides support for many basic mathematical operations. Function tf.log() [alias tf.math.log] provides support for the natural logarithmic function in Tensorflow. It expects the input in form of complex numbers as $a+bi$ or floating point numbers. The input type is tensor and if the input contains more than one element, an element-wise logarithm is computed, y=\log_e x}$ .
Syntax: tf.log(x, name=None) or tf.math.log(x, name=None)
Parameters:
x: A Tensor of type bfloat16, half, float32, float64, complex64 or complex128.
name (optional): The name for the operation.
Return type: A Tensor with the same size and type as that of x.
Code #1:
Python3
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 5
a = tf.constant([-0.5, -0.1, 0, 0.1, 0.5], dtype = tf.float32)
# Applying the log function and
# storing the result in 'b'
b = tf.log(a, name ='log')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input type:', a)
print('Input:', sess.run(a))
print('Return type:', b)
print('Output:', sess.run(b))
Output:
Input type: Tensor("Const:0", shape=(5, ), dtype=float32)
Input: [-0.5 -0.1 0. 0.1 0.5]
Return type: Tensor("log:0", shape=(5, ), dtype=float32)
Output: [ nan nan -inf -2.3025851 -0.6931472]
$ nan $ denotes that natural logarithm doesn't exist for negative values and $ -inf $ denotes that it approaches to negative infinity as the input approaches zero.
Code #2: Visualization
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 20 with values from 0 to 1 and 1 to 10
a = np.append(np.linspace(0, 1, 10), np.linspace(1, 10, 10))
# Applying the logarithmic function and
# storing the result in 'b'
b = tf.log(a, name ='log')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.abs")
plt.xlabel("X")
plt.ylabel("Y")
plt.grid()
plt.show()
Output:
Input: [ 0. 0.11111111 0.22222222 0.33333333 0.44444444 0.55555556
0.66666667 0.77777778 0.88888889 1. 1. 2.
3. 4. 5. 6. 7. 8.
9. 10. ]
Output: [ -inf -2.19722458 -1.5040774 -1.09861229 -0.81093022 -0.58778666
-0.40546511 -0.25131443 -0.11778304 0. 0. 0.69314718
1.09861229 1.38629436 1.60943791 1.79175947 1.94591015 2.07944154
2.19722458 2.30258509]