Python - tensorflow.math.unsorted_segment_max()
Last Updated :
16 Jun, 2020
TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.
unsorted_segment_max() is used to find the maximum element in segments of a tensor.
Syntax: tensorflow.math.unsorted_segment_max( data, segment_ids, num_segments, name )
Parameter:
- data: It is a tensor. Allowed dtypes are float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
- segment_ids: It's 1-D tensor with sorted values. It's size should be equal to size of first dimension of data. Allowed dtypes are int32 and int64.
- num_segments: It is a Tensor. Allowed dtypes are int32 and int64.
- name(optional): It defines the name for the operation.
Return: It returns a tensor of dtype as x.
Example 1:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
data = tf.constant([1, 2, 3])
segment_ids = tf.constant([2, 2, 2])
# Printing the input tensor
print('data: ', data)
print('segment_ids: ', segment_ids)
# Calculating result
res = tf.math.unsorted_segment_max(data, segment_ids, tf.constant(3))
# Printing the result
print('Result: ', res)
Output:
data: tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
segment_ids: tf.Tensor([2 2 2], shape=(3, ), dtype=int32)
Result: tf.Tensor([-2147483648 -2147483648 3], shape=(3, ), dtype=int32)
Example 2:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
data = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
segment_ids = tf.constant([0, 0, 2])
# Printing the input tensor
print('data: ', data)
print('segment_ids: ', segment_ids)
# Calculating result
res = tf.math.unsorted_segment_max(data, segment_ids, tf.constant(3))
# Printing the result
print('Result: ', res)
Output:
data: tf.Tensor(
[[1 2 3]
[4 5 6]
[7 8 9]], shape=(3, 3), dtype=int32)
segment_ids: tf.Tensor([0 0 2], shape=(3, ), dtype=int32)
Result: tf.Tensor(
[[ 4 5 6]
[-2147483648 -2147483648 -2147483648]
[ 7 8 9]], shape=(3, 3), dtype=int32)
Similar Reads
Python - tensorflow.math.unsorted_segment_mean() TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks. unsorted_segment_mean() is used to find the mean of segments. Syntax: tensorflow.math.unsorted_segment_mean( data, segment_ids, num_segments, name ) Parameter: data: It i
2 min read
Python - tensorflow.math.unsorted_segment_min() TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks. unsorted_segment_min() is used to find the minimum element in segments of Tensor. Syntax: tensorflow.math.unsorted_segment_min( data, segment_ids, num_segments, name ) Pa
2 min read
Python - tensorflow.math.unsorted_segment_prod() TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks. unsorted_segment_prod() is used to find the product of segments. Syntax: tensorflow.math.unsorted_segment_prod( data, segment_ids, num_segments, name ) Parameter: data: I
2 min read
Python - tensorflow.math.unsorted_segment_sum() TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks. unsorted_segment_sum() is used to find the sum of segments. Syntax: tensorflow.math.unsorted_segment_sum( data, segment_ids, num_segments, name ) Parameter: data: It is a
2 min read
Python - tensorflow.math.unsorted_segment_sqrt_n() TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks. unsorted_segment_sqrt_n() is used to find the sum of segments divided by sqrt(N). Syntax: tensorflow.math.unsorted_segment_sqrt_n( data, segment_ids, num_segments, name )
2 min read