Syntax:tf.keras.layers.Conv1DTranspose( filters, kernel_size, strides=1, padding='valid', output_padding=None, data_format=None, dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs)
Input Shape: A 3D tensor of shape: (batch_size, steps, channels)
Output Shape: A 3D tensor of shape: (batch_size, new_steps, filters)
Parameters:
- filters (Integer): The output space's dimensionality (i.e. the number of output filters in the convolution).
- kernel_size (Integer): The 1D convolution window's integer length.
- strides: The stride of the convolution along the time dimension.
- padding: The padding mode.
- output_padding:
- data_format: The data format. This specifies the order in which the dimensions in the inputs are ordered. channels_last is the default value.
- dilation_rate: In each dimension, the dilation rate to utilize for the dilated convolution. It should be an integer.
- activation: The layer's activation function.
- use_bias (Boolean): If the layer has a bias vector or not. True is the default value.
- kernel_initializer: The convolutional kernel weights matrix's initializer.
- bias_initializer: The bias vector's initializer.
- kernel_regularizer: The regularizer function applied to the kernel weights matrix.
- bias_regularizer: The regularizer function applied to the bias vector.
- activity_regularizer: The regularizer function applied to the activation.
- kernel_constraint: The constraint for the convolutional kernel weights.
- bias_constraint: The constraint for the bias vector.
Returns: A 3D tensor representing activation(conv1dtranspose(inputs, kernel) + bias).