Exponential Distribution in NumPy Last Updated : 23 Apr, 2025 Comments Improve Suggest changes Like Article Like Report The Exponential Distribution is a fundamental concept in probability and statistics. It describe the time between events in a Poisson process where events occur continuously and independently at a constant average rate. You can generate random numbers which follow exponential Distribution using numpy.random.exponential() method.Syntax : numpy.random.exponential(scale=1.0, size=None)scale : The inverse of the rate parameter (β=1/λ) which determines the spread of the distribution.size : The shape of the returned array.Example 1: Generate a Single Random NumberTo generate a single random number from a default Exponential Distribution (scale=1): Python import numpy as np random_number = np.random.exponential() print(random_number) Output:0.008319485004465102To generate multiple random numbers: Python random_numbers = np.random.exponential(size=5) print(random_numbers) Output:[1.15900802 0.1997201 0.73995988 0.19688073 0.54198053]Visualizing the Exponential DistributionVisualizing the generated numbers helps in understanding their behavior. Below is an example of plotting a histogram of random numbers generated using numpy.random.exponential. Python import numpy as np import matplotlib.pyplot as plt import seaborn as sns scale = 2 size = 1000 data = np.random.exponential(scale=scale, size=size) sns.histplot(data, bins=30, kde=True, color='orange', edgecolor='black') plt.title(f"Exponential Distribution (Scale={scale})") plt.xlabel("Value") plt.ylabel("Frequency") plt.grid(True) plt.show() Output:Exponential DistributionThe above image shows an Exponential Distribution with a scale parameter of 2. The histogram represents simulated data while the orange curve depicts the theoretical distribution. Comment More infoAdvertise with us Next Article NumPy Introduction J jitender_1998 Follow Improve Article Tags : Python Python-numpy Python numpy-Random Practice Tags : python Similar Reads sympy.stats.Exponential() in python With the help of sympy.stats.Exponential() method, we can get the continuous random variable representing the exponential distribution. Syntax : sympy.stats.Exponential(name, rate) Return : Return continuous random variable. Example #1 : In this example we can see that by using sympy.stats.Exponenti 1 min read Numpy | Mathematical Function NumPy contains a large number of various mathematical operations. NumPy provides standard trigonometric functions, functions for arithmetic operations, handling complex numbers, etc. Trigonometric Functions âNumPy has standard trigonometric functions which return trigonometric ratios for a given ang 9 min read NumPy Introduction NumPy(Numerical Python) is a fundamental library for Python numerical computing. It provides efficient multi-dimensional array objects and various mathematical functions for handling large datasets making it a critical tool for professionals in fields that require heavy computation.Table of ContentK 7 min read Find Exponential of a column in Pandas-Python Let's see how to find Exponential of a column in Pandas Dataframe. First, let's create a Dataframe: Python3 # importing pandas and # numpy libraries import pandas as pd import numpy as np # creating and initializing a list values= [ ['Rohan', 5, 50.59], ['Elvish', 2, 90.57], ['Deepak', 10, 98.51], [ 2 min read numpy.random.standard_exponential() in Python With the help of numpy.random.standard_exponential() method, we can get the random samples of standard exponential distribution and return the random samples. Syntax : numpy.random.standard_exponential(size=None) Return : Return the random samples as numpy array. Example #1 : In this example we can 1 min read Fast Exponentiation in Python We are going to learn about how it can be optimized or make fast computations or how to use exponents in Python to the power of numbers as compared to the traditional method using Python. What is Exponentiation? It is a mathematical operation in which we compute the expression ab by repeating the m 6 min read Like