sciPy stats.trimboth() function | Python Last Updated : 20 Feb, 2019 Comments Improve Suggest changes Like Article Like Report scipy.stats.trimboth(a, proportiontocut, axis=0) function slices off the portion of elements in the array from both the ends. Parameters : arr : [array_like] Input array or object to trim. axis : Axis along which the mean is to be computed. By default axis = 0. proportiontocut : Proportion (in range 0-1) of data to trim of each end. Results : trimmed array elements from both the ends in the given proportion. Code #1: Working Python3 1== # stats.trimboth() method import numpy as np from scipy import stats arr1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] print ("\narr1 : ", arr1) print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .3)) print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .1)) Output : arr1 : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] clipped arr1 : [3 4 5 6] clipped arr1 : [1 3 2 4 5 6 7 8] Code #2: Python3 1== # stats.trimboth() method import numpy as np from scipy import stats arr1 = [[0, 12, 21, 3, 14], [53, 16, 37, 85, 39]] print ("\narr1 : ", arr1) print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .3)) print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .1)) print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .1, axis = 1)) print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .1, axis = 0)) Output : arr1 : [[0, 12, 21, 3, 14], [53, 16, 37, 85, 39]] clipped arr1 : [[ 0 12 21 3 14] [53 16 37 85 39]] clipped arr1 : [[ 0 12 21 3 14] [53 16 37 85 39]] clipped arr1 : [[ 0 3 12 14 21] [16 37 39 53 85]] clipped arr1 : [[ 0 12 21 3 14] [53 16 37 85 39]] Comment More infoAdvertise with us Next Article sciPy stats.trimboth() function | Python V vishal3096 Follow Improve Article Tags : Python Python-scipy Python scipy-stats-functions Practice Tags : python Similar Reads sciPy stats.trim1() function | Python scipy.stats.trim1(a, proportiontocut, tail='right') function slices off the portion of elements in the array from one end of the passed array distribution. Parameters : arr : [array_like] Input array or object to trim. tail : [optional] {'left', 'right'} Defaults to right. proportiontocut : Proporti 2 min read scipy stats.tmin() function | Python scipy.stats.tmin(array, lowerlimit=None, axis=0, inclusive=True) function calculates the trimmed minimum of the array elements along with ignoring the values lying outside the specified limits, along the specified axis. Parameters : array: Input array or object having the elements to calculate the m 2 min read sciPy stats.tvar() function | Python scipy.stats.tvar(array, limits=None, inclusive=(1, 1)) function calculates the trimmed variance of the array elements along with ignoring the values lying outside the specified limits. It's formula - Parameters : array: Input array or object having the elements to calculate the trimmed variance. lim 2 min read sciPy stats.tmax() function | Python scipy.stats.tmax(array, lowerlimit=None, axis=0, inclusive=True) function calculates the trimmed maximum of the array elements along with ignoring the values lying outside the specified limits, along the specified axis. Parameters : array: Input array or object having the elements to calculate the t 2 min read sciPy stats.tstd() function | Python scipy.stats.tstd(array, limits=None, inclusive=(True, True)) calculates the trimmed standard deviation of the array elements along the specified axis of the array. It's formula - Parameters : array: Input array or object having the elements to calculate the trimmed standard deviation. axis: Axis alo 2 min read Like