Queries to calculate Bitwise OR of an array with updates
Last Updated :
26 Jul, 2025
Given an array arr[ ] consisting of N positive integers and a 2D array Q[][] consisting of queries of the form {i, val}, the task for each query is to replace arr[i] by val and calculate the Bitwise OR of the modified array.
Examples:
Input: arr[ ]= {1, 2, 3}, Q[ ][] = {{1, 4}, {3, 0}}
Output: 7 6
Explanation:
Replacing arr[1] by 4 modifies arr[ ] to {4, 2, 3}. Bitwise OR = 7.
Replacing arr[2] by 0 modifies arr[] to {4, 2, 0}. Bitwise OR = 6.
Input: arr[ ]= {1, 2, 3, 4}, Q[][ ] = {{4, 0}, {2, 8}}
Output: 3 11
Explanation:
Replacing arr[3] by 0 modifies arr[ ] to {1, 2, 3, 0}. Bitwise OR = 3.
Replacing arr[2] by 8 modifies arr[] to {1, 8, 3, 0}. Bitwise OR = 11.
Naive Approach: The simplest approach to solve the problem is to traverse the array arr[ ] for every ith query after updating arr[Q[i][0]] by Q[i][1] to calculate Bitwise OR of the array.
Time Complexity: O(N * sizeof(Q))
Auxiliary Space: O(1)
Efficient Approach: Follow the steps below to solve the problem:
- Initialize an array result[] of size 32. Set all its elements to 0.
- Traverse the array arr[].
- Iterate over the bits of each array element.
- Increment result[j] for every jth unset bit found in the current array element.

- Now, traverse the array Q[][] and perform the following:
- Modify result[] by removing the set bits of Q[i][0] from their respective positions.
- Update result[] by adding the set bits of Q[i][0] from their respective positions.
- Convert the result[] array to its equivalent decimal value and print it.

Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define bitsSize 32
// Function to convert a binary array
// to equivalent decimal representation
int toDecimal(int result[], int size)
{
// Stores the decimal result
int ans = 0;
// Traverse the array
for (int i = 0; i < size; i++) {
// If non-zero element
// is encountered
if (result[i] != 0)
ans += pow(2, i);
}
return ans;
}
// Function to replace an array
// element old_value by new_value
void findOrUtil(int result[],
int old_value,
int new_value)
{
int i = 0;
// Removing old value from result
while (old_value != 0) {
result[i] -= old_value % 2;
old_value = old_value / 2;
i++;
}
i = 0;
// Adding new value to result
while (new_value != 0) {
result[i] += new_value % 2;
new_value = new_value / 2;
i++;
}
}
// Function to calculate and print
// Bitwise OR of array for each query
void findOR(vector<int> arr,
vector<pair<int, int> > queries)
{
int result[bitsSize];
// Initialize all bits to zero
memset(result, 0, sizeof(result));
// Precompute and fill result[]
for (int i = 0; i < arr.size(); i++) {
int val = arr[i];
int j = 0;
// Add all set bits to result[]
while (val != 0) {
result[j] += val % 2;
val = val / 2;
j++;
}
}
// Traverse the queries
for (int q = 0; q < queries.size(); q++) {
int index = queries[q].first;
int new_value = queries[q].second;
// Update result[] by replacing
// arr[index] by new_value
findOrUtil(result, arr[index], new_value);
// Modify arr[]
arr[index] = new_value;
// Calculate Bitwise OR
int ans = toDecimal(result, bitsSize);
// Print the value of Bitwise OR
cout << ans << endl;
}
}
// Driver Code
int main()
{
// Given array
vector<int> arr = { 1, 2, 3, 4 };
// Queries of the form {i, value}
vector<pair<int, int> > queries;
// 0-indexed queries
queries.push_back({ 3, 0 });
queries.push_back({ 1, 8 });
findOR(arr, queries);
return 0;
}
Java
// Java implementation of the approach
import java.util.ArrayList;
class GFG{
static int bitsSize = 32;
static class Pair{
int first;
int second;
Pair(int first, int second)
{
this.first = first;
this.second = second;
}
}
// Function to convert a binary array
// to equivalent decimal representation
static int toDecimal(int result[], int size)
{
// Stores the decimal result
int ans = 0;
// Traverse the array
for(int i = 0; i < size; i++)
{
// If non-zero element
// is encountered
if (result[i] != 0)
ans += Math.pow(2, i);
}
return ans;
}
// Function to replace an array
// element old_value by new_value
static void findOrUtil(int result[],
int old_value,
int new_value)
{
int i = 0;
// Removing old value from result
while (old_value != 0)
{
result[i] -= old_value % 2;
old_value = old_value / 2;
i++;
}
i = 0;
// Adding new value to result
while (new_value != 0)
{
result[i] += new_value % 2;
new_value = new_value / 2;
i++;
}
}
// Function to calculate and print
// Bitwise OR of array for each query
static void findOR(int[] arr, ArrayList<Pair> queries)
{
int result[] = new int[bitsSize];
// Precompute and fill result[]
for(int i = 0; i < arr.length; i++)
{
int val = arr[i];
int j = 0;
// Add all set bits to result[]
while (val != 0)
{
result[j] += val % 2;
val = val / 2;
j++;
}
}
// Traverse the queries
for(int q = 0; q < queries.size(); q++)
{
int index = queries.get(q).first;
int new_value = queries.get(q).second;
// Update result[] by replacing
// arr[index] by new_value
findOrUtil(result, arr[index], new_value);
// Modify arr[]
arr[index] = new_value;
// Calculate Bitwise OR
int ans = toDecimal(result, bitsSize);
// Print the value of Bitwise OR
System.out.println(ans);
}
}
// Driver code
public static void main(String[] args)
{
// Given array
int arr[] = { 1, 2, 3, 4 };
// Queries of the form {i, value}
ArrayList<Pair> queries = new ArrayList<>();
// 0-indexed queries
queries.add(new Pair(3, 0));
queries.add(new Pair(1, 8));
findOR(arr, queries);
}
}
// This code is contributed by abhinavjain194
Python3
# Python3 implementation of the approach
# Function to convert a binary array
# to equivalent decimal representation
def toDecimal(result, size):
# Stores the decimal result
ans = 0
# Traverse the array
for i in range(size):
# If non-zero element
# is encountered
if (result[i] != 0):
ans += pow(2, i)
return ans
# Function to replace an array
# element old_value by new_value
def findOrUtil(result, old_value, new_value):
i = 0
# Removing old value from result
while (old_value != 0):
result[i] -= old_value % 2
old_value = old_value // 2
i += 1
i = 0
# Adding new value to result
while (new_value != 0):
result[i] += new_value % 2
new_value = new_value // 2
i += 1
# Function to calculate and print
# Bitwise OR of array for each query
def findOR(arr, queries):
result = [0] * 32
# Initialize all bits to zero
# memset(result, 0, sizeof(result))
# Precompute and fill result[]
for i in range(len(arr)):
val = arr[i]
j = 0
# Add all set bits to result[]
while (val != 0):
result[j] += val % 2
val = val // 2
j += 1
# Traverse the queries
for q in range(len(queries)):
index = queries[q][0]
new_value = queries[q][1]
# Update result[] by replacing
# arr[index] by new_value
findOrUtil(result, arr[index],
new_value)
# Modify arr[]
arr[index] = new_value
# Calculate Bitwise OR
ans = toDecimal(result, 32)
# Print the value of Bitwise OR
print (ans)
# Driver Code
if __name__ == '__main__':
# Given array
arr = [ 1, 2, 3, 4 ]
# Queries of the form {i, value}
queries = []
# 0-indexed queries
queries.append([3, 0])
queries.append([1, 8])
findOR(arr, queries)
# This code is contributed by mohit kumar 29
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG{
static int bitsSize = 32;
class Pair{
public int first;
public int second;
public Pair(int first, int second)
{
this.first = first;
this.second = second;
}
}
// Function to convert a binary array
// to equivalent decimal representation
static int toDecimal(int []result, int size)
{
// Stores the decimal result
int ans = 0;
// Traverse the array
for(int i = 0; i < size; i++)
{
// If non-zero element
// is encountered
if (result[i] != 0)
ans += (int)Math.Pow(2, i);
}
return ans;
}
// Function to replace an array
// element old_value by new_value
static void findOrUtil(int []result,
int old_value,
int new_value)
{
int i = 0;
// Removing old value from result
while (old_value != 0)
{
result[i] -= old_value % 2;
old_value = old_value / 2;
i++;
}
i = 0;
// Adding new value to result
while (new_value != 0)
{
result[i] += new_value % 2;
new_value = new_value / 2;
i++;
}
}
// Function to calculate and print
// Bitwise OR of array for each query
static void findOR(int[] arr, List<Pair> queries)
{
int []result = new int[bitsSize];
// Precompute and fill result[]
for(int i = 0; i < arr.Length; i++)
{
int val = arr[i];
int j = 0;
// Add all set bits to result[]
while (val != 0)
{
result[j] += val % 2;
val = val / 2;
j++;
}
}
// Traverse the queries
for(int q = 0; q < queries.Count; q++)
{
int index = queries[q].first;
int new_value = queries[q].second;
// Update result[] by replacing
// arr[index] by new_value
findOrUtil(result, arr[index], new_value);
// Modify []arr
arr[index] = new_value;
// Calculate Bitwise OR
int ans = toDecimal(result, bitsSize);
// Print the value of Bitwise OR
Console.WriteLine(ans);
}
}
// Driver code
public static void Main(String[] args)
{
// Given array
int []arr = { 1, 2, 3, 4 };
// Queries of the form {i, value}
List<Pair> queries = new List<Pair>();
// 0-indexed queries
queries.Add(new Pair(3, 0));
queries.Add(new Pair(1, 8));
findOR(arr, queries);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript implementation of the approach
var bitsSize = 32;
// Function to convert a binary array
// to equivalent decimal representation
function toDecimal(result, size)
{
// Stores the decimal result
var ans = 0;
var i;
// Traverse the array
for (i = 0; i < size; i++) {
// If non-zero element
// is encountered
if (result[i] != 0)
ans += Math.pow(2, i);
}
return ans;
}
// Function to replace an array
// element old_value by new_value
function findOrUtil(result, old_value, new_value)
{
var i = 0;
// Removing old value from result
while (old_value != 0) {
result[i] -= old_value % 2;
old_value = parseInt(old_value / 2);
i++;
}
i = 0;
// Adding new value to result
while(new_value != 0) {
result[i] += new_value % 2;
new_value = parseInt(new_value / 2);
i++;
}
}
// Function to calculate and print
// Bitwise OR of array for each query
function findOR(arr, queries)
{
var result = Array(bitsSize).fill(0);
var i;
// Precompute and fill result[]
for (i = 0; i < arr.length; i++) {
var val = arr[i];
var j = 0;
// Add all set bits to result[]
while (val != 0) {
result[j] += val % 2;
val = parseInt(val / 2);
j++;
}
}
var q;
// Traverse the queries
for (q = 0; q < queries.length; q++) {
var index = queries[q][0];
var new_value = queries[q][1];
// Update result[] by replacing
// arr[index] by new_value
findOrUtil(result, arr[index], new_value);
// Modify arr[]
arr[index] = new_value;
// Calculate Bitwise OR
var ans = toDecimal(result, bitsSize);
// Print the value of Bitwise OR
document.write(ans+"<br>");
}
}
// Driver Code
// Given array
var arr = [1, 2, 3, 4];
// Queries of the form {i, value}
var queries = [[3, 0],[1, 8]]
findOR(arr, queries);
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem