Given an Array arr[] of positive integers of size n. We are required to perform following 3 queries on given array -
1) Given L and R, we have to find the sum of squares of all element lying in range [L,R]
2) Given L, R and X, we have to set all element lying in range [L,R] to X
3) Given L, R and X, we have to increment the value of all element lying in range [L,R] by X
Input Format : First line contains the number of test cases T
Next line contains two positive integers - N (Size of Array ) and Q (Number of queries to be asked).
The next line contains N integers of array
Each of the next Q lines contains the Q queries to be asked. Each line starts with a number, which indicates the type of query followed by required input arguments. Input format for all 3 queries will look like -
0 L R X : Set all numbers in Range [L, R] to "X"
1 L R X : ADD "X" to all numbers in Range [L, R]
2 L R : Return the sum of the squares of the numbers in Range {L, R]
Output Format : For each test case, output "Case <TestCaseNo>:” in first line and then output the sum of squares for each queries of type 2 in separate lines.
Input:
1
3 3
1 2 3
0 1 2 2
1 1 3 3
2 1 3
Output : Case 1:
86
Explanation : With 1st query (type 0), array elements from range [1,2] will set as 2. Updated array will become [2,2,3]
With 2nd query (type 1), array elements from range [1,3] will be incremented by 3. Updated array will become [5,5,6]
With 3rd query (type 2), Sum of Squares for range [1,3] will be 5^2+5^2+6^2 =86
Input:
1
4 5
1 2 3 4
2 1 4
0 3 4 1
2 1 4
1 3 4 1
2 1 4
Output : Case 1:
30
7
13
Optimized Solution
Sample Segment TreeWith the help of Segment tree with Lazy Propagation, we can perform all given queries in O(logn) time.
To know about how Segment Tree works, follow this link -https://www.geeksforgeeks.org/segment-tree-set-1-sum-of-given-range/
For this, we will create a segment tree with two variables - first one will store sum of squares in a range and other will store the sum of elements in the given range. (We will discuss this later why do we need two variables here). To update values in the given range, we will use lazy propagation technique.
For more information Regarding Lazy Propagation use link - https://www.geeksforgeeks.org/lazy-propagation-in-segment-tree/
Here if we have to set all numbers to X in a given range, then we can use this formula to update values for one particular node (which lies in given range) -
Updated Sum of squares = (R-L+1)*X*X
Updated Sum = (R-L+1)*X
(As there are R-L+1 elements present under that particular node which need to be set as X)
If we need to increment all values in the given range [L,R] with value X, we can use this formula to update values for one particular node (which lies in given range) -
Updated Sum of square = Sum of Square in range [L,R] + (R-L+1)*X*X + 2*X*(sum in range [L,R])
Updated Sum = Sum in Range [L,R] + (R-L+1)*X
(As there are R-L+1 elements present under that particular node which need to be incremented by X. Every node's value can be represented as : (Previous_val + X). To calculate new sum of squares for a root node, we can use this expression -
(Previous_val1+ x)^2 + (Previous_val2 + x)^2 + ..... (for all child nodes)
Above expression will simplify to Sum of Square in range [L,R] + (R-L+1)*X*X + 2*X*(sum in range [L,R])
Here you can see that we need sum of elements for calculation, hence we have stored this in our segment tree along with sum of squares to fasten our calculation.
How to Update using Lazy trees
Here you can see that we need 3 lazy trees -
1. For maintaining the set update
2. For maintaining the increment by X update
3. For maintaining the order of operations, in case multiple queries come for a single node
Now creating 3 lazy trees, will not be space effective. But we can solve this by creating 1 lazy tree (change, type) with two variables - one for maintaining the update value (X) and other for type (which update we need to do increment or set).
Now to handle order of multiple queries on single node, there can two possibilities -
1) First increment and then set query - in this case we actually don't need to increment the value, we can directly set the value to X. Because setting value of a node to X, before and after increment will remain same.
2) First set then increment query - Here effectively we are updating each node's value as : X (set query) + X (increment query). So we can keep our type of query as set and value of change (i.e. to which nodes value will be set) as (X_set + X_increment)
For ex - arr[]=[1,2,3,4] first set [3,4] with 2 then increment [3,4] with 1
array after set query = [1,2,2,2]
array after increment query = [1,2,3,3]
We can achieve this in one operation by setting the value for all given range nodes as :
(X_set + X_increment) = 2 + 1 = 3
Updated array = [1,2,3,3]
C++
// We will use 1 based indexing
// type 0 = Set
// type 1 = increment
#include<bits/stdc++.h>
using namespace std;
class segmenttree{
public:
int sum_of_squares;
int sum_of_element;
};
class lazytree{
public:
int change;
int type;
};
// Query On segment Tree
int query(segmenttree*tree,lazytree*lazy,int start,int end,int low,int high,int treeindex){
if(lazy[treeindex].change!=0){
int change=lazy[treeindex].change;
int type=lazy[treeindex].type;
if(lazy[treeindex].type==0){
tree[treeindex].sum_of_squares=(end-start+1)*change*change;
tree[treeindex].sum_of_element=(end-start+1)*change;
if(start!=end){
lazy[2*treeindex].change=change;
lazy[2*treeindex].type=type;
lazy[2*treeindex+1].change=change;
lazy[2*treeindex+1].type=type;
}
}
else{
tree[treeindex].sum_of_squares+=((end-start+1)*change*change)+(2*change*tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element+=(end-start+1)*change;
if(start!=end){
if(lazy[2*treeindex].change==0 || lazy[2*treeindex].type==1){
lazy[2*treeindex].change+=change;
lazy[2*treeindex].type=type;
}else{
lazy[2*treeindex].change+=change;
}
if(lazy[2*treeindex+1].change==0 || lazy[2*treeindex+1].type==1){
lazy[2*treeindex+1].change+=change;
lazy[2*treeindex+1].type=type;
}else{
lazy[2*treeindex+1].change+=change;
}
}
}
lazy[treeindex].change=0;
}
if(start>high || end<low){
return 0;
}
if(start>=low && high>=end){
return tree[treeindex].sum_of_squares;
}
int mid=(start+end)/2;
int ans=query(tree,lazy,start,mid,low,high,2*treeindex);
int ans1=query(tree,lazy,mid+1,end,low,high,2*treeindex+1);
return ans+ans1;
}
// Update on Segment Tree
void update(int*arr,segmenttree*tree,lazytree*lazy,int start,int end,int low,int high,int change,int type,int treeindex){
if(lazy[treeindex].change!=0){
int change=lazy[treeindex].change;
int type=lazy[treeindex].type;
if(lazy[treeindex].type==0){
tree[treeindex].sum_of_squares=(end-start+1)*change*change;
tree[treeindex].sum_of_element=(end-start+1)*change;
if(start!=end){
lazy[2*treeindex].change=change;
lazy[2*treeindex].type=type;
lazy[2*treeindex+1].change=change;
lazy[2*treeindex+1].type=type;
}
}
else{
tree[treeindex].sum_of_squares+=((end-start+1)*change*change)+(2*change*tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element+=(end-start+1)*change;
if(start!=end){
if(lazy[2*treeindex].change==0 || lazy[2*treeindex].type==1){
lazy[2*treeindex].change+=change;
lazy[2*treeindex].type=type;
}else{
lazy[2*treeindex].change+=change;
}
if(lazy[2*treeindex+1].change==0 || lazy[2*treeindex+1].type==1){
lazy[2*treeindex+1].change+=change;
lazy[2*treeindex+1].type=type;
}else{
lazy[2*treeindex+1].change+=change;
}
}
}
lazy[treeindex].change=0;
}
if(start>high || end<low){
return;
}
if(start>=low && high>=end){
if(type==0){
tree[treeindex].sum_of_squares=(end-start+1)*change*change;
tree[treeindex].sum_of_element=(end-start+1)*change;
if(start!=end){
lazy[2*treeindex].change=change;
lazy[2*treeindex].type=type;
lazy[2*treeindex+1].change=change;
lazy[2*treeindex+1].type=type;
}
}else{
tree[treeindex].sum_of_squares+=((end-start+1)*change*change)+(2*change*tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element+=(end-start+1)*change;
if(start!=end){
if(lazy[2*treeindex].change==0 || lazy[2*treeindex].type==1){
lazy[2*treeindex].change+=change;
lazy[2*treeindex].type=type;
}else{
lazy[2*treeindex].change+=change;
}
if(lazy[2*treeindex+1].change==0 || lazy[2*treeindex+1].type==1){
lazy[2*treeindex+1].change+=change;
lazy[2*treeindex+1].type=type;
}else{
lazy[2*treeindex+1].change+=change;
}
}
}
return;
}
int mid=(start+end)/2;
update(arr,tree,lazy,start,mid,low,high,change,type,2*treeindex);
update(arr,tree,lazy,mid+1,end,low,high,change,type,2*treeindex+1);
tree[treeindex].sum_of_squares=tree[2*treeindex].sum_of_squares+tree[2*treeindex+1].sum_of_squares;
tree[treeindex].sum_of_element=tree[2*treeindex].sum_of_element+tree[2*treeindex+1].sum_of_element;
}
// creation of segment tree
void create(int*arr,segmenttree*tree,int start,int end,int treeindex){
if(start==end){
tree[treeindex].sum_of_squares=start*start;
tree[treeindex].sum_of_element=start;
return;
}
int mid=(start+end)/2;
create(arr,tree,start,mid,treeindex*2);
create(arr,tree,mid+1,end,2*treeindex+1);
tree[treeindex].sum_of_squares=tree[treeindex*2].sum_of_squares+tree[2*treeindex+1].sum_of_squares;
tree[treeindex].sum_of_element=tree[treeindex*2].sum_of_element+tree[2*treeindex+1].sum_of_element;
}
int main() {
int t;
cin>>t;
int case1=1;
while(t--){
cout<<"Case "<<case1++<<":"<<endl;
int n,q;
cin>>n>>q;
int*arr=new int[n+1];
for(int i=1;i<=n;i++){
cin>>arr[i];
}
segmenttree*tree=new segmenttree[2*n];
lazytree*lazy=new lazytree[2*n];
create(arr,tree,1,n,1);
while(q--){
int type;
cin>>type;
if(type==2){
int start,end;
cin>>start>>end;
cout<<query(tree,lazy,1,n,start,end,1)<<endl;
}else{
int start,end,change;
cin>>start>>end>>change;
update(arr,tree,lazy,1,n,start,end,change,type,1);
}
}
}
}
Java
// We will use 1 based indexing
// type 0 = Set
// type 1 = increment
import java.util.*;
// Define a class to hold information for each node in the segment tree
class SegmentTree {
public int sum_of_squares;
public int sum_of_element;
}
// Define a class to hold lazy update information for each node in the lazy tree
class LazyTree {
public int change;
public int type;
}
public class GFG {
// Query on the segment tree
static int query(SegmentTree[] tree, LazyTree[] lazy, int start, int end, int low, int high, int treeindex) {
// Check if there are pending updates for this node
if (lazy[treeindex].change != 0) {
int change = lazy[treeindex].change;
int type = lazy[treeindex].type;
// Apply the update based on the type (Set or Increment)
if (lazy[treeindex].type == 0) {
tree[treeindex].sum_of_squares = (end - start + 1) * change * change;
tree[treeindex].sum_of_element = (end - start + 1) * change;
if (start != end) {
// Propagate the update to child nodes
lazy[2 * treeindex].change = change;
lazy[2 * treeindex].type = type;
lazy[2 * treeindex + 1].change = change;
lazy[2 * treeindex + 1].type = type;
}
} else {
tree[treeindex].sum_of_squares += ((end - start + 1) * change * change) + (2 * change * tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element += (end - start + 1) * change;
if (start != end) {
if (lazy[2 * treeindex].change == 0 || lazy[2 * treeindex].type == 1) {
lazy[2 * treeindex].change += change;
lazy[2 * treeindex].type = type;
} else {
lazy[2 * treeindex].change += change;
}
if (lazy[2 * treeindex + 1].change == 0 || lazy[2 * treeindex + 1].type == 1) {
lazy[2 * treeindex + 1].change += change;
lazy[2 * treeindex + 1].type = type;
} else {
lazy[2 * treeindex + 1].change += change;
}
}
}
// Reset the pending update after applying it
lazy[treeindex].change = 0;
}
// If the current node's range is completely outside the query range, return 0
if (start > high || end < low) {
return 0;
}
// If the current node's range is completely inside the query range, return the sum of squares
if (start >= low && high >= end) {
return tree[treeindex].sum_of_squares;
}
// Otherwise, query recursively in the left and right child nodes
int mid = (start + end) / 2;
int ans = query(tree, lazy, start, mid, low, high, 2 * treeindex);
int ans1 = query(tree, lazy, mid + 1, end, low, high, 2 * treeindex + 1);
return ans + ans1;
}
// Update on Segment Tree
static void update(int[] arr, SegmentTree[] tree, LazyTree[] lazy, int start, int end, int low, int high, int change, int type, int treeindex) {
// Check if there are pending updates for this node
if (lazy[treeindex].change != 0) {
int change1 = lazy[treeindex].change;
int type1 = lazy[treeindex].type;
// Apply the update based on the type (Set or Increment)
if (lazy[treeindex].type == 0) {
tree[treeindex].sum_of_squares = (end - start + 1) * change1 * change1;
tree[treeindex].sum_of_element = (end - start + 1) * change1;
if (start != end) {
// Propagate the update to child nodes
lazy[2 * treeindex].change = change1;
lazy[2 * treeindex].type = type1;
lazy[2 * treeindex + 1].change = change1;
lazy[2 * treeindex + 1].type = type1;
}
} else {
tree[treeindex].sum_of_squares += ((end - start + 1) * change1 * change1) + (2 * change1 * tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element += (end - start + 1) * change1;
if (start != end) {
if (lazy[2 * treeindex].change == 0 || lazy[2 * treeindex].type == 1) {
lazy[2 * treeindex].change += change1;
lazy[2 * treeindex].type = type1;
} else {
lazy[2 * treeindex].change += change1;
}
if (lazy[2 * treeindex + 1].change == 0 || lazy[2 * treeindex + 1].type == 1) {
lazy[2 * treeindex + 1].change += change1;
lazy[2 * treeindex + 1].type = type1;
} else {
lazy[2 * treeindex + 1].change += change1;
}
}
}
// Reset the pending update after applying it
lazy[treeindex].change = 0;
}
// If the current node's range is completely outside the update range, return
if (start > high || end < low) {
return;
}
// If the current node's range is completely inside the update range, apply the update
if (start >= low && high >= end) {
if (type == 0) {
tree[treeindex].sum_of_squares = (end - start + 1) * change * change;
tree[treeindex].sum_of_element = (end - start + 1) * change;
if (start != end) {
// Propagate the update to child nodes
lazy[2 * treeindex].change = change;
lazy[2 * treeindex].type = type;
lazy[2 * treeindex + 1].change = change;
lazy[2 * treeindex + 1].type = type;
}
} else {
tree[treeindex].sum_of_squares += ((end - start + 1) * change * change) + (2 * change * tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element += (end - start + 1) * change;
if (start != end) {
if (lazy[2 * treeindex].change == 0 || lazy[2 * treeindex].type == 1) {
lazy[2 * treeindex].change += change;
lazy[2 * treeindex].type = type;
} else {
lazy[2 * treeindex].change += change;
}
if (lazy[2 * treeindex + 1].change == 0 || lazy[2 * treeindex + 1].type == 1) {
lazy[2 * treeindex + 1].change += change;
lazy[2 * treeindex + 1].type = type;
} else {
lazy[2 * treeindex + 1].change += change;
}
}
}
return;
}
// Otherwise, update recursively in the left and right child nodes
int mid = (start + end) / 2;
update(arr, tree, lazy, start, mid, low, high, change, type, 2 * treeindex);
update(arr, tree, lazy, mid + 1, end, low, high, change, type, 2 * treeindex + 1);
// Update the current node's information based on the child nodes
tree[treeindex].sum_of_squares = tree[2 * treeindex].sum_of_squares + tree[2 * treeindex + 1].sum_of_squares;
tree[treeindex].sum_of_element = tree[2 * treeindex].sum_of_element + tree[2 * treeindex + 1].sum_of_element;
}
// Creation of segment tree
static void create(int[] arr, SegmentTree[] tree, int start, int end, int treeindex) {
// If the range consists of a single element, set the node's values accordingly
if (start == end) {
tree[treeindex].sum_of_squares = start * start;
tree[treeindex].sum_of_element = start;
return;
}
// Divide the range and recursively create child nodes
int mid = (start + end) / 2;
create(arr, tree, start, mid, treeindex * 2);
create(arr, tree, mid + 1, end, 2 * treeindex + 1);
// Update the current node's information based on the child nodes
tree[treeindex].sum_of_squares = tree[treeindex * 2].sum_of_squares + tree[2 * treeindex + 1].sum_of_squares;
tree[treeindex].sum_of_element = tree[treeindex * 2].sum_of_element + tree[2 * treeindex + 1].sum_of_element;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt(); // Read the number of test cases
int case1 = 1; // Initialize case counter
// Iterate through each test case
while (t-- > 0) {
System.out.println("Case " + case1 + ":");
int n = scanner.nextInt(); // Read the size of the array
int q = scanner.nextInt(); // Read the number of queries
int[] arr = new int[n + 1]; // Initialize the array with one-based indexing
// Read the elements of the array
for (int i = 1; i <= n; i++) {
arr[i] = scanner.nextInt();
}
SegmentTree[] tree = new SegmentTree[2 * n]; // Initialize the segment tree array
LazyTree[] lazy = new LazyTree[2 * n]; // Initialize the lazy tree array
// Create the segment tree
for (int i = 0; i < 2 * n; i++) {
tree[i] = new SegmentTree();
lazy[i] = new LazyTree();
}
create(arr, tree, 1, n, 1); // Build the segment tree
// Process the queries
while (q-- > 0) {
int type = scanner.nextInt(); // Read the query type
if (type == 2) {
int start = scanner.nextInt();
int end = scanner.nextInt();
System.out.println(query(tree, lazy, 1, n, start, end, 1)); // Execute query type 2
} else {
int start = scanner.nextInt();
int end = scanner.nextInt();
int change = scanner.nextInt();
update(arr, tree, lazy, 1, n, start, end, change, type, 1); // Execute query type 1
}
}
case1++; // Move to the next test case
}
}
}
// this code is written by arindam369
Python3
# We will use 1 based indexing
# type 0 = Set
# type 1 = increment
class SegmentTree:
def __init__(self, sum_of_squares, sum_of_element):
self.sum_of_squares = sum_of_squares
self.sum_of_element = sum_of_element
class LazyTree:
def __init__(self, change, type):
self.change = change
self.type = type
# Query On segment Tree
def query(tree, lazy, start, end, low, high, treeindex):
if lazy[treeindex].change != 0:
change = lazy[treeindex].change
type = lazy[treeindex].type
if lazy[treeindex].type == 0:
tree[treeindex].sum_of_squares = (
end - start + 1) * change * change
tree[treeindex].sum_of_element = (end - start + 1) * change
if start != end:
lazy[2 * treeindex].change = change
lazy[2 * treeindex].type = type
lazy[2 * treeindex + 1].change = change
lazy[2 * treeindex + 1].type = type
else:
tree[treeindex].sum_of_squares += ((end - start + 1) * change * change) + (
2 * change * tree[treeindex].sum_of_element)
tree[treeindex].sum_of_element += (end - start + 1) * change
if start != end:
if lazy[2 * treeindex].change == 0 or lazy[2 * treeindex].type == 1:
lazy[2 * treeindex].change += change
lazy[2 * treeindex].type = type
else:
lazy[2 * treeindex].change += change
if lazy[2 * treeindex + 1].change == 0 or lazy[2 * treeindex + 1].type == 1:
lazy[2 * treeindex + 1].change += change
lazy[2 * treeindex + 1].type = type
else:
lazy[2 * treeindex + 1].change += change
lazy[treeindex].change = 0
if start > high or end < low:
return 0
if start >= low and high >= end:
return tree[treeindex].sum_of_squares
mid = (start + end) // 2
ans = query(tree, lazy, start, mid, low, high, 2 * treeindex)
ans1 = query(tree, lazy, mid + 1, end, low, high, 2 * treeindex + 1)
return ans + ans1
# Update on Segment Tree
# Update on Segment Tree
def update(arr, tree, lazy, start, end, low, high, change, type, treeindex):
if lazy[treeindex].change != 0:
change = lazy[treeindex].change
type = lazy[treeindex].type
if lazy[treeindex].type == 0:
tree[treeindex].sum_of_squares = (
end - start + 1) * change * change
tree[treeindex].sum_of_element = (end - start + 1) * change
if start != end:
lazy[2 * treeindex].change = change
lazy[2 * treeindex].type = type
lazy[2 * treeindex + 1].change = change
lazy[2 * treeindex + 1].type = type
else:
tree[treeindex].sum_of_squares += ((end - start + 1) * change * change) + (
2 * change * tree[treeindex].sum_of_element)
tree[treeindex].sum_of_element += (end - start + 1) * change
if start != end:
if lazy[2 * treeindex].change == 0 or lazy[2 * treeindex].type == 1:
lazy[2 * treeindex].change += change
lazy[2 * treeindex].type = type
else:
lazy[2 * treeindex].change += change
if lazy[2 * treeindex + 1].change == 0 or lazy[2 * treeindex + 1].type == 1:
lazy[2 * treeindex + 1].change += change
lazy[2 * treeindex + 1].type = type
else:
lazy[2 * treeindex + 1].change += change
lazy[treeindex].change = 0
if start > high or end < low:
return
if start >= low and high >= end:
if type == 0:
tree[treeindex].sum_of_squares = (
end - start + 1) * change * change
tree[treeindex].sum_of_element = (end - start + 1) * change
if start != end:
lazy[2 * treeindex].change = change
lazy[2 * treeindex].type = type
lazy[2 * treeindex + 1].change = change
lazy[2 * treeindex + 1].type = type
else:
tree[treeindex].sum_of_squares += ((end - start + 1) * change * change) + (
2 * change * tree[treeindex].sum_of_element)
tree[treeindex].sum_of_element += (end - start + 1) * change
if start != end:
if lazy[2 * treeindex].change == 0 or lazy[2 * treeindex].type == 1:
lazy[2 * treeindex].change += change
lazy[2 * treeindex].type = type
else:
lazy[2 * treeindex].change += change
if lazy[2 * treeindex + 1].change == 0 or lazy[2 * treeindex + 1].type == 1:
lazy[2 * treeindex + 1].change += change
lazy[2 * treeindex + 1].type = type
else:
lazy[2 * treeindex + 1].change += change
return
mid = (start + end) // 2
update(arr, tree, lazy, start, mid, low, high, change, type, 2 * treeindex)
update(arr, tree, lazy, mid + 1, end, low,
high, change, type, 2 * treeindex + 1)
tree[treeindex].sum_of_squares = tree[2 * treeindex].sum_of_squares + \
tree[2 * treeindex + 1].sum_of_squares
tree[treeindex].sum_of_element = tree[2 * treeindex].sum_of_element + \
tree[2 * treeindex + 1].sum_of_element
# create Segment Tree
def create(arr, tree, lazy, start, end, treeindex):
if start == end:
tree[treeindex] = SegmentTree(arr[start] * arr[start], arr[start])
return
mid = (start + end) // 2
create(arr, tree, lazy, start, mid, 2 * treeindex)
create(arr, tree, lazy, mid + 1, end, 2 * treeindex + 1)
tree[treeindex] = SegmentTree(tree[2 * treeindex].sum_of_squares + tree[2 * treeindex + 1].sum_of_squares,
tree[2 * treeindex].sum_of_element + tree[2 * treeindex + 1].sum_of_element)
t = int(input())
case1 = 1
while t > 0:
print("Case {}:".format(case1))
case1 += 1
n, q = map(int, input().split())
arr = [0] * (n + 1)
for i in range(1, n + 1):
arr[i] = int(input())
tree = [0] * (2 * n)
lazy = [0] * (2 * n)
create(arr, tree, 1, n, 1)
while q > 0:
q -= 1
type = int(input())
if type == 2:
start, end = map(int, input().split())
print(query(tree, lazy, 1, n, start, end, 1))
else:
start, end, change = map(int, input().split())
update(arr, tree, lazy, 1, n, start, end, change, type, 1)
t -= 1
C#
using System;
class SegmentTree
{
public int SumOfSquares;
public int SumOfElement;
}
class LazyTree
{
public int Change;
public int Type;
}
class Program
{
// Query on Segment Tree
static int Query(SegmentTree[] tree, LazyTree[] lazy, int start, int end, int low, int high, int treeIndex)
{
if (lazy[treeIndex].Change != 0)
{
int change = lazy[treeIndex].Change;
int type = lazy[treeIndex].Type;
if (lazy[treeIndex].Type == 0)
{
tree[treeIndex].SumOfSquares = (end - start + 1) * change * change;
tree[treeIndex].SumOfElement = (end - start + 1) * change;
if (start != end)
{
lazy[2 * treeIndex].Change = change;
lazy[2 * treeIndex].Type = type;
lazy[2 * treeIndex + 1].Change = change;
lazy[2 * treeIndex + 1].Type = type;
}
}
else
{
tree[treeIndex].SumOfSquares += ((end - start + 1) * change * change) + (2 * change * tree[treeIndex].SumOfElement);
tree[treeIndex].SumOfElement += (end - start + 1) * change;
if (start != end)
{
if (lazy[2 * treeIndex].Change == 0 || lazy[2 * treeIndex].Type == 1)
{
lazy[2 * treeIndex].Change += change;
lazy[2 * treeIndex].Type = type;
}
else
{
lazy[2 * treeIndex].Change += change;
}
if (lazy[2 * treeIndex + 1].Change == 0 || lazy[2 * treeIndex + 1].Type == 1)
{
lazy[2 * treeIndex + 1].Change += change;
lazy[2 * treeIndex + 1].Type = type;
}
else
{
lazy[2 * treeIndex + 1].Change += change;
}
}
}
lazy[treeIndex].Change = 0;
}
if (start > high || end < low)
{
return 0;
}
if (start >= low && high >= end)
{
return tree[treeIndex].SumOfSquares;
}
int mid = (start + end) / 2;
int ans = Query(tree, lazy, start, mid, low, high, 2 * treeIndex);
int ans1 = Query(tree, lazy, mid + 1, end, low, high, 2 * treeIndex + 1);
return ans + ans1;
}
// Update on Segment Tree
static void Update(int[] arr, SegmentTree[] tree, LazyTree[] lazy, int start, int end, int low, int high, int change, int type, int treeIndex)
{
if (lazy[treeIndex].Change != 0)
{
int lazyChange = lazy[treeIndex].Change;
int lazyType = lazy[treeIndex].Type;
if (lazy[treeIndex].Type == 0)
{
tree[treeIndex].SumOfSquares = (end - start + 1) * lazyChange * lazyChange;
tree[treeIndex].SumOfElement = (end - start + 1) * lazyChange;
if (start != end)
{
lazy[2 * treeIndex].Change = lazyChange;
lazy[2 * treeIndex].Type = lazyType;
lazy[2 * treeIndex + 1].Change = lazyChange;
lazy[2 * treeIndex + 1].Type = lazyType;
}
}
else
{
tree[treeIndex].SumOfSquares += ((end - start + 1) * lazyChange * lazyChange) + (2 * lazyChange * tree[treeIndex].SumOfElement);
tree[treeIndex].SumOfElement += (end - start + 1) * lazyChange;
if (start != end)
{
if (lazy[2 * treeIndex].Change == 0 || lazy[2 * treeIndex].Type == 1)
{
lazy[2 * treeIndex].Change += lazyChange;
lazy[2 * treeIndex].Type = lazyType;
}
else
{
lazy[2 * treeIndex].Change += lazyChange;
}
if (lazy[2 * treeIndex + 1].Change == 0 || lazy[2 * treeIndex + 1].Type == 1)
{
lazy[2 * treeIndex + 1].Change += lazyChange;
lazy[2 * treeIndex + 1].Type = lazyType;
}
else
{
lazy[2 * treeIndex + 1].Change += lazyChange;
}
}
}
lazy[treeIndex].Change = 0;
}
if (start > high || end < low)
{
return;
}
if (start >= low && high >= end)
{
if (type == 0)
{
tree[treeIndex].SumOfSquares = (end - start + 1) * change * change;
tree[treeIndex].SumOfElement = (end - start + 1) * change;
if (start != end)
{
lazy[2 * treeIndex].Change = change;
lazy[2 * treeIndex].Type = type;
lazy[2 * treeIndex + 1].Change = change;
lazy[2 * treeIndex + 1].Type = type;
}
}
else
{
tree[treeIndex].SumOfSquares += ((end - start + 1) * change * change) + (2 * change * tree[treeIndex].SumOfElement);
tree[treeIndex].SumOfElement += (end - start + 1) * change;
if (start != end)
{
if (lazy[2 * treeIndex].Change == 0 || lazy[2 * treeIndex].Type == 1)
{
lazy[2 * treeIndex].Change += change;
lazy[2 * treeIndex].Type = type;
}
else
{
lazy[2 * treeIndex].Change += change;
}
if (lazy[2 * treeIndex + 1].Change == 0 || lazy[2 * treeIndex + 1].Type == 1)
{
lazy[2 * treeIndex + 1].Change += change;
lazy[2 * treeIndex + 1].Type = type;
}
else
{
lazy[2 * treeIndex + 1].Change += change;
}
}
}
return;
}
int mid = (start + end) / 2;
Update(arr, tree, lazy, start, mid, low, high, change, type, 2 * treeIndex);
Update(arr, tree, lazy, mid + 1, end, low, high, change, type, 2 * treeIndex + 1);
tree[treeIndex].SumOfSquares = tree[2 * treeIndex].SumOfSquares + tree[2 * treeIndex + 1].SumOfSquares;
tree[treeIndex].SumOfElement = tree[2 * treeIndex].SumOfElement + tree[2 * treeIndex + 1].SumOfElement;
}
// Creation of Segment Tree
static void Create(int[] arr, SegmentTree[] tree, int start, int end, int treeIndex)
{
if (start == end)
{
tree[treeIndex].SumOfSquares = start * start;
tree[treeIndex].SumOfElement = start;
return;
}
int mid = (start + end) / 2;
Create(arr, tree, start, mid, treeIndex * 2);
Create(arr, tree, mid + 1, end, 2 * treeIndex + 1);
tree[treeIndex].SumOfSquares = tree[treeIndex * 2].SumOfSquares + tree[2 * treeIndex + 1].SumOfSquares;
tree[treeIndex].SumOfElement = tree[treeIndex * 2].SumOfElement + tree[2 * treeIndex + 1].SumOfElement;
}
static void Main()
{
int t;
if (int.TryParse(Console.ReadLine(), out t))
{
int case1 = 1;
while (t-- > 0)
{
Console.WriteLine($"Case {case1++}:");
string[] input = Console.ReadLine()?.Split() ?? Array.Empty<string>();
if (input.Length >= 2)
{
int n;
int q;
if (int.TryParse(input[0], out n) && int.TryParse(input[1], out q))
{
int[] arr = new int[n + 1];
input = Console.ReadLine()?.Split() ?? Array.Empty<string>();
for (int i = 1; i <= n; i++)
{
if (int.TryParse(input[i - 1], out arr[i]) == false)
{
Console.WriteLine("Invalid input for array element.");
return;
}
}
SegmentTree[] tree = new SegmentTree[2 * n];
LazyTree[] lazy = new LazyTree[2 * n];
Create(arr, tree, 1, n, 1);
while (q-- > 0)
{
int type;
if (int.TryParse(Console.ReadLine(), out type))
{
if (type == 2)
{
input = Console.ReadLine()?.Split() ?? Array.Empty<string>();
if (input.Length >= 2)
{
int start;
int end;
if (int.TryParse(input[0], out start) && int.TryParse(input[1], out end))
{
Console.WriteLine(Query(tree, lazy, 1, n, start, end, 1));
}
else
{
Console.WriteLine("Invalid input for query.");
return;
}
}
}
else
{
input = Console.ReadLine()?.Split() ?? Array.Empty<string>();
if (input.Length >= 3)
{
int start;
int end;
int change;
if (int.TryParse(input[0], out start) && int.TryParse(input[1], out end) && int.TryParse(input[2], out change))
{
Update(arr, tree, lazy, 1, n, start, end, change, type, 1);
}
else
{
Console.WriteLine("Invalid input for update.");
return;
}
}
}
}
}
}
else
{
Console.WriteLine("Invalid input for n and q.");
return;
}
}
}
}
}
}
JavaScript
// We will use 1 based indexing
// type 0 = Set
// type 1 = increment
class SegmentTree {
constructor() {
this.sum_of_squares = 0;
this.sum_of_element = 0;
}
}
class LazyTree {
constructor() {
this.change = 0;
this.type = 0;
}
}
function query(tree, lazy, start, end, low, high, treeindex) {
if (lazy[treeindex].change !== 0) {
const change = lazy[treeindex].change;
const type = lazy[treeindex].type;
if (lazy[treeindex].type === 0) {
tree[treeindex].sum_of_squares = (end - start + 1) * change * change;
tree[treeindex].sum_of_element = (end - start + 1) * change;
if (start !== end) {
lazy[2 * treeindex].change = change;
lazy[2 * treeindex].type = type;
lazy[2 * treeindex + 1].change = change;
lazy[2 * treeindex + 1].type = type;
}
} else {
tree[treeindex].sum_of_squares += ((end - start + 1) * change * change) + (2 * change * tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element += (end - start + 1) * change;
if (start !== end) {
if (lazy[2 * treeindex].change === 0 || lazy[2 * treeindex].type === 1) {
lazy[2 * treeindex].change += change;
lazy[2 * treeindex].type = type;
} else {
lazy[2 * treeindex].change += change;
}
if (lazy[2 * treeindex + 1].change === 0 || lazy[2 * treeindex + 1].type === 1) {
lazy[2 * treeindex + 1].change += change;
lazy[2 * treeindex + 1].type = type;
} else {
lazy[2 * treeindex + 1].change += change;
}
}
}
lazy[treeindex].change = 0;
}
if (start > high || end < low) {
return 0;
}
if (start >= low && high >= end) {
return tree[treeindex].sum_of_squares;
}
const mid = Math.floor((start + end) / 2);
const ans = query(tree, lazy, start, mid, low, high, 2 * treeindex);
const ans1 = query(tree, lazy, mid + 1, end, low, high, 2 * treeindex + 1);
return ans + ans1;
}
function update(arr, tree, lazy, start, end, low, high, change, type, treeindex) {
if (lazy[treeindex].change !== 0) {
const change1 = lazy[treeindex].change;
const type1 = lazy[treeindex].type;
if (lazy[treeindex].type === 0) {
tree[treeindex].sum_of_squares = (end - start + 1) * change1 * change1;
tree[treeindex].sum_of_element = (end - start + 1) * change1;
if (start !== end) {
lazy[2 * treeindex].change = change1;
lazy[2 * treeindex].type = type1;
lazy[2 * treeindex + 1].change = change1;
lazy[2 * treeindex + 1].type = type1;
}
} else {
tree[treeindex].sum_of_squares += ((end - start + 1) * change1 * change1) + (2 * change1 * tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element += (end - start + 1) * change1;
if (start !== end) {
if (lazy[2 * treeindex].change === 0 || lazy[2 * treeindex].type === 1) {
lazy[2 * treeindex].change += change1;
lazy[2 * treeindex].type = type1;
} else {
lazy[2 * treeindex].change += change1;
}
if (lazy[2 * treeindex + 1].change === 0 || lazy[2 * treeindex + 1].type === 1) {
lazy[2 * treeindex + 1].change += change1;
lazy[2 * treeindex + 1].type = type1;
} else {
lazy[2 * treeindex + 1].change += change1;
}
}
}
lazy[treeindex].change = 0;
}
if (start > high || end < low) {
return;
}
if (start >= low && high >= end) {
if (type === 0) {
tree[treeindex].sum_of_squares = (end - start + 1) * change * change;
tree[treeindex].sum_of_element = (end - start + 1) * change;
if (start !== end) {
lazy[2 * treeindex].change = change;
lazy[2 * treeindex].type = type;
lazy[2 * treeindex + 1].change = change;
lazy[2 * treeindex + 1].type = type;
}
} else {
tree[treeindex].sum_of_squares += ((end - start + 1) * change * change) + (2 * change * tree[treeindex].sum_of_element);
tree[treeindex].sum_of_element += (end - start + 1) * change;
if (start !== end) {
if (lazy[2 * treeindex].change === 0 || lazy[2 * treeindex].type === 1) {
lazy[2 * treeindex].change += change;
lazy[2 * treeindex].type = type;
} else {
lazy[2 * treeindex].change += change;
}
if (lazy[2 * treeindex + 1].change === 0 || lazy[2 * treeindex + 1].type === 1) {
lazy[2 * treeindex + 1].change += change;
lazy[2 * treeindex + 1].type = type;
} else {
lazy[2 * treeindex + 1].change += change;
}
}
}
return;
}
const mid = Math.floor((start + end) / 2);
update(arr, tree, lazy, start, mid, low, high, change, type, 2 * treeindex);
update(arr, tree, lazy, mid + 1, end, low, high, change, type, 2 * treeindex + 1);
tree[treeindex].sum_of_squares = tree[2 * treeindex].sum_of_squares + tree[2 * treeindex + 1].sum_of_squares;
tree[treeindex].sum_of_element = tree[2 * treeindex].sum_of_element + tree[2 * treeindex + 1].sum_of_element;
}
function create(arr, tree, start, end, treeindex) {
if (start === end) {
tree[treeindex].sum_of_squares = start * start;
tree[treeindex].sum_of_element = start;
return;
}
const mid = Math.floor((start + end) / 2);
create(arr, tree, start, mid, treeindex * 2);
create(arr, tree, mid + 1, end, 2 * treeindex + 1);
tree[treeindex].sum_of_squares = tree[treeindex * 2].sum_of_squares + tree[2 * treeindex + 1].sum_of_squares;
tree[treeindex].sum_of_element = tree[treeindex * 2].sum_of_element + tree[2 * treeindex + 1].sum_of_element;
}
function main() {
const readline = require('readline');
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
let t;
let case1 = 1;
rl.on('line', (input) => {
if (!t) {
t = parseInt(input);
} else {
if (case1 <= t) {
console.log(`Case ${case1}:`);
const inputs = input.split(' ').map(Number);
const n = inputs[0];
const q = inputs[1];
const arr = [0, ...Array.from({ length: n }, (_, i) => parseInt(rl.readline()))];
const tree = new Array(2 * n);
const lazy = new Array(2 * n);
for (let i = 0; i < 2 * n; i++) {
tree[i] = new SegmentTree();
lazy[i] = new LazyTree();
}
create(arr, tree, 1, n, 1);
for (let i = 0; i < q; i++) {
const queryType = parseInt(rl.readline());
if (queryType === 2) {
const [start, end] = rl.readline().split(' ').map(Number);
console.log(query(tree, lazy, 1, n, start, end, 1));
} else {
const [start, end, change] = rl.readline().split(' ').map(Number);
update(arr, tree, lazy, 1, n, start, end, change, queryType, 1);
}
}
case1++;
}
if (case1 > t) {
rl.close();
}
}
});
}
main();
Time Complexity:
Time Complexity for tree construction is O(n). There are total 2n-1 nodes, and value of every node is calculated only once in tree construction.
Time complexity to query is O(Logn).
The time complexity of update is also O(Logn).
Space Complexity : O(2*N) .
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read