Queries to find the left-most given type integer in a binary array
Last Updated :
16 Jul, 2021
Given a binary array arr[], the task is to design a data structure that supports the following operations in O(1).
- Type 1: Remove and print the leftmost 0 from the array.
- Type 2: Remove and print the leftmost 1 from the array.
- Type 3: Remove and print the leftmost element from the array.
If any of the requested element is not in the array then print -1.
Examples:
Input: arr[] = {1, 0, 1, 1, 1}, q[] = {1, 3, 1}
Output:
0
1
-1
Type 1 query: Print 0 and the array become {1, 1, 1, 1}
Type 3 query: Print 1, arr[] = {1, 1, 1}
Type 1 query: There are no 0s left, so print -1
Input: arr[] = {1, 0, 1, 0, 1}, q[] = {3, 3, 3}
Output:
1
0
1
Naive approach: A simple approach is to insert all the elements in a queue which supports first in first out. This approach will work in O(1) for finding the leftmost element in the array but it cannot find the left-most 1 or the left-most 0 in O(1).
Efficient approach: Create two queues, the first queue will store the indices of the 0s in the order of appearance and the second queue will store the indices of 1s in the order of appearance. Now, the given operations can be performed as follows:
- Type 1: Print the remove the head of the first queue in O(1).
- Type 2: Print the remove the head of the second queue in O(1).
- Type 3: Compare the head of both the queues and return the one with minimum index and then remove it..
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
// To store the indices of 0s and 1s
static queue<int> zero;
static queue<int> one ;
// Function to return the leftmost 0
static int getLeftMostZero()
{
// If there are no 0s
if (zero.empty())
return -1;
// pop the head of the queue
zero.pop();
return 0;
}
// Function to return the leftmost 1
static int getLeftMostOne()
{
// If there are no 1s
if (one.empty())
return -1;
// pop the head of the queue
one.pop();
return 1;
}
// Function to return the pre-calculate array
// such that arr[i] stores the count of
// valid numbers in the range [0, i]
int getLeftMostElement()
{
// If there are no elements left
if (zero.empty() && one.empty())
return -1;
// If only 1s are there
else if (zero.empty())
{
one.pop();
return 1;
}
// If only 0s are there
else if (one.empty())
{
zero.pop();
return 0;
}
// Get the element which is at
// the left-most position
int res = (zero.front() < one.front()) ? 0 : 1;
if (res == 0)
zero.pop();
else
one.pop();
return res;
}
// Function to perform the queries
void performQueries(int arr[], int n,
int queries[], int q)
{
for (int i = 0; i < n; i++)
{
if (arr[i] == 0)
zero.push(i);
else
one.push(i);
}
// For every query
for (int i = 0; i < q; i++)
{
// Get its type
int type = queries[i];
switch (type)
{
// Perform type 1 query
case 1:
cout << (getLeftMostZero())
<< endl;
break;
// Perform type 2 query
case 2:
cout << (getLeftMostOne())
<< endl;
break;
// Perform type 3 query
case 3:
cout << (getLeftMostElement())
<< endl;
break;
}
}
}
// Driver code
int main()
{
int arr[] = { 1, 0, 1, 1, 1 };
int n = sizeof(arr) / sizeof(int);
int queries[] = { 1, 3, 1 };
int q = sizeof(queries) / sizeof(int);
performQueries(arr, n, queries, q);
}
// This code is contributed by andrew1234
Java
// Java implementation of the approach
import java.util.*;
class GFG {
// Function to return the leftmost 0
static int getLeftMostZero(Queue<Integer> zero)
{
// If there are no 0s
if (zero.isEmpty())
return -1;
// Remove the head of the queue
zero.remove();
return 0;
}
// Function to return the leftmost 1
static int getLeftMostOne(Queue<Integer> one)
{
// If there are no 1s
if (one.isEmpty())
return -1;
// Remove the head of the queue
one.remove();
return 1;
}
// Function to return the pre-calculate array
// such that arr[i] stores the count of
// valid numbers in the range [0, i]
static int getLeftMostElement(Queue<Integer> zero, Queue<Integer> one)
{
// If there are no elements left
if (zero.isEmpty() && one.isEmpty())
return -1;
// If only 1s are there
else if (zero.isEmpty()) {
one.remove();
return 1;
}
// If only 0s are there
else if (one.isEmpty()) {
zero.remove();
return 0;
}
// Get the element which is at
// the left-most position
int res = (zero.peek() < one.peek()) ? 0 : 1;
if (res == 0)
zero.remove();
else
one.remove();
return res;
}
// Function to perform the queries
static void performQueries(int arr[], int n, int queries[], int q)
{
// To store the indices of 0s and 1s
Queue<Integer> zero = new LinkedList<>();
Queue<Integer> one = new LinkedList<>();
for (int i = 0; i < n; i++) {
if (arr[i] == 0)
zero.add(i);
else
one.add(i);
}
// For every query
for (int i = 0; i < q; i++) {
// Get its type
int type = queries[i];
switch (type) {
// Perform type 1 query
case 1:
System.out.println(getLeftMostZero(zero));
break;
// Perform type 2 query
case 2:
System.out.println(getLeftMostOne(one));
break;
// Perform type 3 query
case 3:
System.out.println(getLeftMostElement(zero, one));
break;
}
}
}
// Driver code
public static void main(String args[])
{
int arr[] = { 1, 0, 1, 1, 1 };
int n = arr.length;
int queries[] = { 1, 3, 1 };
int q = queries.length;
performQueries(arr, n, queries, q);
}
}
Python3
# Python3 implementation of the approach
from collections import deque
# To store the indices of 0s and 1s
zero = deque()
one = deque()
# Function to return the leftmost 0
def getLeftMostZero():
# If there are no 0s
if not len(zero):
return -1
# pop the head of the queue
zero.popleft()
return 0
# Function to return the leftmost 1
def getLeftMostOne():
# If there are no 1s
if not len(one):
return -1
# pop the head of the queue
one.popleft()
return 1
# Function to return the pre-calculate array
# such that arr[i] stores the count of
# valid numbers in the range [0, i]
def getLeftMostElement():
# If there are no elements left
if not len(zero) and not len(one):
return -1
# If only 1s are there
elif not len(zero):
one.popleft()
return 1
# If only 0s are there
elif not len(one):
zero.popleft()
return 0
# Get the element which is at
# the left-most position
res = 0 if zero[0] < one[0] else 1
if res == 0:
zero.popleft()
else:
one.popleft()
return res
# Function to perform the queries
def performQueries(arr: list, n: int, queries: list, q: int):
for i in range(n):
if arr[i] == 0:
zero.append(i)
else:
one.append(i)
# For every query
for i in range(q):
# Get its type
type = queries[i]
# Perform type 1 query
if type == 1:
print(getLeftMostZero())
# Perform type 2 query
elif type == 2:
print(getLeftMostOne())
# Perform type 3 query
elif type == 3:
print(getLeftMostElement())
# Driver Code
if __name__ == "__main__":
arr = [1, 0, 1, 1, 1]
n = len(arr)
queries = [1, 3, 1]
q = len(queries)
performQueries(arr, n, queries, q)
# This code is contributed by
# sanjeev2552
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
// Function to return the leftmost 0
static int getLeftMostZero(Queue<int> zero)
{
// If there are no 0s
if (zero.Count == 0)
return -1;
// Remove the head of the queue
zero.Dequeue();
return 0;
}
// Function to return the leftmost 1
static int getLeftMostOne(Queue<int> one)
{
// If there are no 1s
if (one.Count == 0)
return -1;
// Remove the head of the queue
one.Dequeue();
return 1;
}
// Function to return the pre-calculate array
// such that arr[i] stores the count of
// valid numbers in the range [0, i]
static int getLeftMostElement(Queue<int> zero,
Queue<int> one)
{
// If there are no elements left
if (zero.Count == 0 && one.Count == 0)
return -1;
// If only 1s are there
else if (zero.Count == 0)
{
one.Dequeue();
return 1;
}
// If only 0s are there
else if (one.Count == 0)
{
zero.Dequeue();
return 0;
}
// Get the element which is at
// the left-most position
int res = (zero.Peek() < one.Peek()) ? 0 : 1;
if (res == 0)
zero.Dequeue();
else
one.Dequeue();
return res;
}
// Function to perform the queries
static void performQueries(int []arr, int n,
int []queries, int q)
{
// To store the indices of 0s and 1s
Queue<int> zero = new Queue<int>();
Queue<int> one = new Queue<int>();
for (int i = 0; i < n; i++)
{
if (arr[i] == 0)
zero.Enqueue(i);
else
one.Enqueue(i);
}
// For every query
for (int i = 0; i < q; i++)
{
// Get its type
int type = queries[i];
switch (type)
{
// Perform type 1 query
case 1:
Console.WriteLine(getLeftMostZero(zero));
break;
// Perform type 2 query
case 2:
Console.WriteLine(getLeftMostOne(one));
break;
// Perform type 3 query
case 3:
Console.WriteLine(getLeftMostElement(zero, one));
break;
}
}
}
// Driver code
public static void Main(String []args)
{
int []arr = { 1, 0, 1, 1, 1 };
int n = arr.Length;
int []queries = { 1, 3, 1 };
int q = queries.Length;
performQueries(arr, n, queries, q);
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// JavaScript implementation of the approach
// Function to return the leftmost 0
function getLeftMostZero(zero)
{
// If there are no 0s
if (zero.length==0)
return -1;
// Remove the head of the queue
zero.shift();
return 0;
}
// Function to return the leftmost 1
function getLeftMostOne(one)
{
// If there are no 1s
if (one.length==0)
return -1;
// Remove the head of the queue
one.shift();
return 1;
}
// Function to return the pre-calculate array
// such that arr[i] stores the count of
// valid numbers in the range [0, i]
function getLeftMostElement(zero,one)
{
// If there are no elements left
if (zero.length==0 && one.length==0)
return -1;
// If only 1s are there
else if (zero.length==0) {
one.shift();
return 1;
}
// If only 0s are there
else if (one.length==0) {
zero.shift();
return 0;
}
// Get the element which is at
// the left-most position
let res = (zero[0] < one[0]) ? 0 : 1;
if (res == 0)
zero.shift();
else
one.shift();
return res;
}
// Function to perform the queries
function performQueries(arr,n,queries,q)
{
// To store the indices of 0s and 1s
let zero = [];
let one = [];
for (let i = 0; i < n; i++) {
if (arr[i] == 0)
zero.push(i);
else
one.push(i);
}
// For every query
for (let i = 0; i < q; i++) {
// Get its type
let type = queries[i];
switch (type) {
// Perform type 1 query
case 1:
document.write(getLeftMostZero(zero)+"<br>");
break;
// Perform type 2 query
case 2:
document.write(getLeftMostOne(one)+"<br>");
break;
// Perform type 3 query
case 3:
document.write(getLeftMostElement(zero, one)+"<br>");
break;
}
}
}
// Driver code
let arr=[1, 0, 1, 1, 1];
let n = arr.length;
let queries=[1, 3, 1 ];
let q = queries.length;
performQueries(arr, n, queries, q);
// This code is contributed by avanitrachhadiya2155
</script>
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms
DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph
Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation
Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Data Structures Tutorial
Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all
Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort
Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read