Open In App

random.gauss() function in Python

Last Updated : 27 Mar, 2025
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

random module is used to generate random numbers in Python. Not actually random, rather this is used to generate pseudo-random numbers. That implies that these randomly generated numbers can be determined. gauss() is an inbuilt method of the random module. It is used to return a random floating point number with gaussian distribution.

Example:

Python
import random 

mu = 100
sigma = 50

print(random.gauss(mu, sigma)) 

Output :

127.80261974806497

Explanation: This code generates and prints a random number from a Gaussian distribution with a mean (mu) of 100 and a standard deviation (sigma) of 50 using the random.gauss() function. The result will be a value close to 100 but can vary within a range due to the standard deviation.

Syntax

random.gauss(mu, sigma)

Parameters

  • mu: mean
  • sigma: standard deviation

Return Value

  • Returns a random gaussian distribution floating number

Examples of random.gauss() function

1. Gaussian Distribution Plot

We can generate the number multiple times and plot a graph to observe the gaussian distribution.

Python
import random 
import matplotlib.pyplot as plt 
	
# store the random numbers in a list 
nums = [] 
mu = 100
sigma = 50
	
for i in range(100): 
	temp = random.gauss(mu, sigma) 
	nums.append(temp) 
		
# plotting a graph 
plt.plot(nums) 
plt.show() 

Output :

gaussian-distribution-plot
Gaussian Distribution Plot

Explanation: This code generates 100 random numbers following a Gaussian distribution with a mean of 100 and a standard deviation of 50. It stores these numbers in a list and then plots the values using matplotlib to visualize the distribution.

2. Gaussian Distribution Histogram

We can create a histogram to observe the density of the gaussian distribution.

Python
import random 
import matplotlib.pyplot as plt 
	
# store the random numbers in a list 
nums = [] 
mu = 100
sigma = 50
	
for i in range(10000): 
	temp = random.gauss(mu, sigma) 
	nums.append(temp) 
		
# plotting a graph 
plt.hist(nums, bins = 200) 
plt.show() 

Output :

Screenshot-2492
Gaussian Distribution Histogram

Explanation: This code generates 10,000 random numbers following a Gaussian distribution with a mean of 100 and a standard deviation of 50. It stores the numbers in a list and then plots a histogram using matplotlib to visualize the distribution with 200 bins.


Article Tags :
Practice Tags :

Similar Reads