Reorder Columns in a Specific Order Using Python Polars
Last Updated :
01 Aug, 2024
Polars is a powerful DataFrame library in Rust and Python that is known for its speed and efficiency. It's designed to handle large datasets with ease, making it an excellent choice for data analysis and manipulation. One common task in data manipulation is reordering the columns of a data frame. This article will guide you through three different methods to reorder columns in a specific order using Polars.
Prerequisites
Before we dive into the methods, ensure you have Polars installed. You can install it using pip:
pip install polars
Loading Data into Polars DataFrame
To illustrate the methods of reordering columns, let's create a sample DataFrame. This DataFrame will contain some fictional data for demonstration purposes.
Python
import polars as pl
# Create a sample DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago'],
'Salary': [70000, 80000, 90000]
}
df = pl.DataFrame(data)
print(df)
Output
shape: (3, 4)
┌─────────┬─────┬─────────────┬────────┐
│ Name ┆ Age ┆ City ┆ Salary │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ str ┆ i64 │
╞═════════╪═════╪═════════════╪════════╡
│ Alice ┆ 25 ┆ New York ┆ 70000 │
│ Bob ┆ 30 ┆ Los Angeles ┆ 80000 │
│ Charlie ┆ 35 ┆ Chicago ┆ 90000 │
└─────────┴─────┴─────────────┴────────┘
Reorder Columns in a Specific Order Using Polars
1. Using the select Method
The select method allows you to specify the columns in the order you want and select method allows us to specify the order of columns explicitly.
Python
import polars as pl
# Create a sample DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago'],
'Salary': [70000, 80000, 90000]
}
# Reorder columns using the select method
df_reordered = df.select(['City', 'Name', 'Salary', 'Age'])
print(df_reordered)
Output
shape: (3, 4)
┌─────────────┬─────────┬────────┬─────┐
│ City ┆ Name ┆ Salary ┆ Age │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 ┆ i64 │
╞═════════════╪═════════╪════════╪═════╡
│ New York ┆ Alice ┆ 70000 ┆ 25 │
│ Los Angeles ┆ Bob ┆ 80000 ┆ 30 │
│ Chicago ┆ Charlie ┆ 90000 ┆ 35 │
└─────────────┴─────────┴────────┴─────┘
2. Using the with_columns Method
The with_columns method can also be used to reorder columns by specifying the columns in the desired order.
Python
import polars as pl
# Create a sample DataFrame
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago'],
'Salary': [70000, 80000, 90000]
}
# Reorder columns using the with_columns method
df_reordered = df.with_columns([df['City'], df['Name'], df['Salary'], df['Age']])
print(df_reordered)
Output
shape: (3, 4)
┌─────────┬─────┬─────────────┬────────┐
│ Name ┆ Age ┆ City ┆ Salary │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ str ┆ i64 │
╞═════════╪═════╪═════════════╪════════╡
│ Alice ┆ 25 ┆ New York ┆ 70000 │
│ Bob ┆ 30 ┆ Los Angeles ┆ 80000 │
│ Charlie ┆ 35 ┆ Chicago ┆ 90000 │
└─────────┴─────┴─────────────┴────────┘
3. Using Column Indexing
Another method is to use column indexing to reorder the columns.
Python
# Reorder columns
df_reordered = df[:, ["Salary", "Age", "Name", "City"]]
print(df_reordered)
Output
shape: (3, 4)
┌────────┬─────┬─────────┬─────────────┐
│ Salary ┆ Age ┆ Name ┆ City │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ str │
╞════════╪═════╪═════════╪═════════════╡
│ 70000 ┆ 25 ┆ Alice ┆ New York │
│ 80000 ┆ 30 ┆ Bob ┆ Los Angeles │
│ 90000 ┆ 35 ┆ Charlie ┆ Chicago │
└────────┴─────┴─────────┴─────────────┘
Conclusion
Reordering columns in a Polars DataFrame is a straightforward task that can be achieved using various methods. The select method offers explicit control over the column order, while column indexing provides a concise way to achieve the same result. The with_columns method allows for reconstructing the DataFrame with the desired column order. Each method has its use cases, and understanding them enhances your ability to manipulate data efficiently in Polars.
Similar Reads
How to reverse column order in a matrix with Python? In this article, we will see how to reverse the column order of a matrix in Python. Examples: Input: arr = [[10,20,30], [40,50,60], [70,80,90]] Output: 30 20 10 60 50 40 90 80 70 Input: arr = [[15,30], [45,60], [75,90], [105,120]] Output: 30 15 60 45 90 75 120 105 Matrices are created in python by u
2 min read
How to reverse a Colormap using Matplotlib in Python? Prerequisites: Matplotlib Matplotlib has many built-in Colormaps. Colormaps are nothing but the dictionary which maps the integer data/numbers into colors. Colormaps are used to differentiate or distinguish the data in a particular plot. The reason to use the colormaps is that it is easier for human
6 min read
Reorder the column of dataframe in R using Dplyr In this article, we will discuss how to rearrange or reorder the column of the dataframe using dplyr package in R Programming Language. Creating Dataframe for demonstration: R # load the package library(dplyr) # create the dataframe with three columns # id , department and salary with 8 rows data =
4 min read
Polar Charts using Plotly in Python A Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. plotly is an interactive visualization libra
2 min read
How to rearrange columns of a 2D NumPy array using given index positions? In this article, we will learn how to rearrange columns of a given numpy array using given index positions. Here the columns are rearranged with the given indexes. For this, we can simply store the columns values in lists and arrange these according to the given index list but this approach is very
2 min read
How to Remove a Column using Dplyr package in R In this article, we are going to remove a column(s) in the R programming language using dplyr library. Dataset in use: Remove column using column nameHere we will use select() method to select and remove column by its name. Syntax: select(dataframe,-column_name) Here, dataframe is the input datafram
3 min read
Change the order of a Pandas DataFrame columns in Python Let's explore ways to change the order of the Pandas DataFrame column in Python. Reordering columns in large Pandas DataFrames enhances data readability and usability.Change the Order of Pandas DataFrame Columns using ilociloc method allows you to reorder columns by specifying the index positions of
2 min read
How to Read an Excel File using polars The Polars is a fast, efficient DataFrame library in Python, designed for processing large datasets with low memory usage and high performance. While Polars is more commonly used with CSV, Parquet, and JSON files, we can also work with Excel files, though this requires an additional setup as Polars
4 min read
Python | Trigonometric operations in excel file using openpyxl Prerequisite : Adjusting rows and columns of an excel sheet using openpyxl. Openpyxl is a Python library using which one can perform multiple operations on excel files like reading, writing, mathematical operations and plotting graphs. Letâs see how to perform different Trigonometric operations usin
3 min read
Mapping a Python Dict to a Polars Series Polars is an efficient DataFrame library that excels in performance, especially when working with large datasets. While manipulating data, you might encounter situations where you need to map the values of a column based on a Python dictionary. This is a common task when you want to replace or map v
2 min read