Ropes Data Structure (Fast String Concatenation)
Last Updated :
17 Mar, 2023
One of the most common operations on strings is appending or concatenation. Appending to the end of a string when the string is stored in the traditional manner (i.e. an array of characters) would take a minimum of O(n) time (where n is the length of the original string).
We can reduce time taken by append using Ropes Data Structure.
Ropes Data Structure
A Rope is a binary tree structure where each node except the leaf nodes, contains the number of characters present to the left of that node. Leaf nodes contain the actual string broken into substrings (size of these substrings can be decided by the user).
Consider the image below.

The image shows how the string is stored in memory. Each leaf node contains substrings of the original string and all other nodes contain the number of characters present to the left of that node. The idea behind storing the number of characters to the left is to minimise the cost of finding the character present at i-th position.
Advantages
1. Ropes drastically cut down the cost of appending two strings.
2. Unlike arrays, ropes do not require large contiguous memory allocations.
3. Ropes do not require O(n) additional memory to perform operations like insertion/deletion/searching.
4. In case a user wants to undo the last concatenation made, he can do so in O(1) time by just removing the root node of the tree.
Disadvantages
1. The complexity of source code increases.
2. Greater chances of bugs.
3. Extra memory required to store parent nodes.
4. Time to access i-th character increases.
Now let’s look at a situation that explains why Ropes are a good substitute to monolithic string arrays.
Given two strings a[] and b[]. Concatenate them in a third string c[].
Examples:
Input : a[] = "This is ", b[] = "an apple"
Output : "This is an apple"
Input : a[] = "This is ", b[] = "geeksforgeeks"
Output : "This is geeksforgeeks"
Method 1 (Naive method)
We create a string c[] to store concatenated string. We first traverse a[] and copy all characters of a[] to c[]. Then we copy all characters of b[] to c[].
Implementation:
C++
// Simple C++ program to concatenate two strings
#include <iostream>
using namespace std;
// Function that concatenates strings a[0..n1-1]
// and b[0..n2-1] and stores the result in c[]
void concatenate(char a[], char b[], char c[],
int n1, int n2)
{
// Copy characters of A[] to C[]
int i;
for (i=0; i<n1; i++)
c[i] = a[i];
// Copy characters of B[]
for (int j=0; j<n2; j++)
c[i++] = b[j];
c[i] = '\0';
}
// Driver code
int main()
{
char a[] = "Hi This is geeksforgeeks. ";
int n1 = sizeof(a)/sizeof(a[0]);
char b[] = "You are welcome here.";
int n2 = sizeof(b)/sizeof(b[0]);
// Concatenate a[] and b[] and store result
// in c[]
char c[n1 + n2 - 1];
concatenate(a, b, c, n1, n2);
for (int i=0; i<n1+n2-1; i++)
cout << c[i];
return 0;
}
Java
//Java program to concatenate two strings
class GFG {
// Function that concatenates strings a[0..n1-1]
// and b[0..n2-1] and stores the result in c[]
static void concatenate(char a[], char b[], char c[],
int n1, int n2) {
// Copy characters of A[] to C[]
int i;
for (i = 0; i < n1; i++) {
c[i] = a[i];
}
// Copy characters of B[]
for (int j = 0; j < n2; j++) {
c[i++] = b[j];
}
}
// Driver code
public static void main(String[] args) {
char a[] = "Hi This is geeksforgeeks. ".toCharArray();
int n1 = a.length;
char b[] = "You are welcome here.".toCharArray();
int n2 = b.length;
// Concatenate a[] and b[] and store result
// in c[]
char c[] = new char[n1 + n2];
concatenate(a, b, c, n1, n2);
for (int i = 0; i < n1 + n2 - 1; i++) {
System.out.print(c[i]);
}
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 program to concatenate two strings
# Function that concatenates strings a[0..n1-1]
# and b[0..n2-1] and stores the result in c[]
def concatenate(a, b, c, n1, n2):
# Copy characters of A[] to C[]
i = -1
for i in range(n1):
c[i] = a[i]
# Copy characters of B[]
for j in range(n2):
c[i] = b[j]
i += 1
# Driver Code
if __name__ == "__main__":
a = "Hi This is geeksforgeeks. "
n1 = len(a)
b = "You are welcome here."
n2 = len(b)
a = list(a)
b = list(b)
# Concatenate a[] and b[] and
# store result in c[]
c = [0] * (n1 + n2 - 1)
concatenate(a, b, c, n1, n2)
for i in c:
print(i, end = "")
# This code is contributed by
# sanjeev2552
C#
// C# program to concatenate two strings
using System;
public class GFG {
// Function that concatenates strings a[0..n1-1]
// and b[0..n2-1] and stores the result in c[]
static void concatenate(char []a, char []b, char []c,
int n1, int n2) {
// Copy characters of A[] to C[]
int i;
for (i = 0; i < n1; i++) {
c[i] = a[i];
}
// Copy characters of B[]
for (int j = 0; j < n2; j++) {
c[i++] = b[j];
}
}
// Driver code
public static void Main() {
char []a = "Hi This is geeksforgeeks. ".ToCharArray();
int n1 = a.Length;
char []b = "You are welcome here.".ToCharArray();
int n2 = b.Length;
// Concatenate a[] and b[] and store result
// in c[]
char []c = new char[n1 + n2];
concatenate(a, b, c, n1, n2);
for (int i = 0; i < n1 + n2 - 1; i++) {
Console.Write(c[i]);
}
}
}
/*This code is contributed by PrinciRaj1992*/
JavaScript
// Function that concatenates strings a[0..n1-1]
// and b[0..n2-1] and stores the result in c[]
function concatenate(a, b, c, n1, n2) {
// Copy characters of A[] to C[]
let i;
for (i=0; i<n1; i++)
c[i] = a[i];
// Copy characters of B[]
for (let j=0; j<n2; j++)
c[i++] = b[j];
c[i] = '\0';
}
// Driver code
function main() {
let a = "Hi This is geeksforgeeks. ";
let n1 = a.length;
let b = "You are welcome here.";
let n2 = b.length;
// Concatenate a[] and b[] and store result
// in c[]
let c = Array(n1 + n2 - 1);
concatenate(a, b, c, n1, n2);
for (let i=0; i<n1+n2-1; i++)
console.log(c[i]);
return 0;
}
main();
Output:
Hi This is geeksforgeeks. You are welcome here
Time complexity : O(max(n1, n2))
Auxiliary Space: O(n1 + n2)
Now let's try to solve the same problem using Ropes.
Method 2 (Rope structure method)
This rope structure can be utilized to concatenate two strings in constant time.
1. Create a new root node (that stores the root of the new concatenated string)
2. Mark the left child of this node, the root of the string that appears first.
3. Mark the right child of this node, the root of the string that appears second.
And that's it. Since this method only requires to make a new node, it's complexity is O(1).
Consider the image below (Image source : https://en.wikipedia.org/wiki/Rope_(data_structure))

Implementation:
CPP
// C++ program to concatenate two strings using
// rope data structure.
#include <bits/stdc++.h>
using namespace std;
// Maximum no. of characters to be put in leaf nodes
const int LEAF_LEN = 2;
// Rope structure
class Rope
{
public:
Rope *left, *right, *parent;
char *str;
int lCount;
};
// Function that creates a Rope structure.
// node --> Reference to pointer of current root node
// l --> Left index of current substring (initially 0)
// r --> Right index of current substring (initially n-1)
// par --> Parent of current node (Initially NULL)
void createRopeStructure(Rope *&node, Rope *par,
char a[], int l, int r)
{
Rope *tmp = new Rope();
tmp->left = tmp->right = NULL;
// We put half nodes in left subtree
tmp->parent = par;
// If string length is more
if ((r-l) > LEAF_LEN)
{
tmp->str = NULL;
tmp->lCount = (r-l)/2;
node = tmp;
int m = (l + r)/2;
createRopeStructure(node->left, node, a, l, m);
createRopeStructure(node->right, node, a, m+1, r);
}
else
{
node = tmp;
tmp->lCount = (r-l);
int j = 0;
tmp->str = new char[LEAF_LEN];
for (int i=l; i<=r; i++)
tmp->str[j++] = a[i];
}
}
// Function that prints the string (leaf nodes)
void printstring(Rope *r)
{
if (r==NULL)
return;
if (r->left==NULL && r->right==NULL)
cout << r->str;
printstring(r->left);
printstring(r->right);
}
// Function that efficiently concatenates two strings
// with roots root1 and root2 respectively. n1 is size of
// string represented by root1.
// root3 is going to store root of concatenated Rope.
void concatenate(Rope *&root3, Rope *root1, Rope *root2, int n1)
{
// Create a new Rope node, and make root1
// and root2 as children of tmp.
Rope *tmp = new Rope();
tmp->parent = NULL;
tmp->left = root1;
tmp->right = root2;
root1->parent = root2->parent = tmp;
tmp->lCount = n1;
// Make string of tmp empty and update
// reference r
tmp->str = NULL;
root3 = tmp;
}
// Driver code
int main()
{
// Create a Rope tree for first string
Rope *root1 = NULL;
char a[] = "Hi This is geeksforgeeks. ";
int n1 = sizeof(a)/sizeof(a[0]);
createRopeStructure(root1, NULL, a, 0, n1-1);
// Create a Rope tree for second string
Rope *root2 = NULL;
char b[] = "You are welcome here.";
int n2 = sizeof(b)/sizeof(b[0]);
createRopeStructure(root2, NULL, b, 0, n2-1);
// Concatenate the two strings in root3.
Rope *root3 = NULL;
concatenate(root3, root1, root2, n1);
// Print the new concatenated string
printstring(root3);
cout << endl;
return 0;
}
Java
import java.util.ArrayList;
// Rope structure
class Rope {
Rope left;
Rope right;
Rope parent;
ArrayList<Character> str;
int lCount;
Rope()
{
this.left = null;
this.right = null;
this.parent = null;
this.str = new ArrayList<Character>();
this.lCount = 0;
}
}
class Main {
// Maximum no. of characters to be put in leaf nodes
static final int LEAF_LEN = 2;
// Function that creates a Rope structure.
// node --> Reference to pointer of current root node
// l --> Left index of current substring (initially
// 0) r --> Right index of current substring
// (initially n-1) par --> Parent of current node
// (Initially NULL)
static Rope createRopeStructure(Rope node, Rope par,
String a, int l, int r)
{
Rope tmp = new Rope();
tmp.left = tmp.right = null;
// We put half nodes in left subtree
tmp.parent = par;
if ((r - l) > LEAF_LEN) {
tmp.str = null;
tmp.lCount = (int)Math.floor((r - l) / 2);
node = tmp;
int m = (int)Math.floor((l + r) / 2);
node.left = createRopeStructure(node.left, node,
a, l, m);
node.right = createRopeStructure(
node.right, node, a, m + 1, r);
}
else {
node = tmp;
tmp.lCount = (r - l);
int j = 0;
for (int i = l; i <= r; i++) {
tmp.str.add(a.charAt(i));
}
}
return node;
}
// Function that prints the string (leaf nodes)
static void printstring(Rope r)
{
if (r == null) {
return;
}
if (r.left == null && r.right == null) {
for (char c : r.str) {
System.out.print(c);
}
}
printstring(r.left);
printstring(r.right);
}
// Function that efficiently concatenates two strings
// with roots root1 and root2 respectively. n1 is size
// of string represented by root1. root3 is going to
// store root of concatenated Rope.
static Rope concatenate(Rope root3, Rope root1,
Rope root2, int n1)
{
// Create a new Rope node, and make root1
// and root2 as children of tmp.
Rope tmp = new Rope();
tmp.left = root1;
tmp.right = root2;
root1.parent = tmp;
root2.parent = tmp;
tmp.lCount = n1;
// Make string of tmp empty and update
// reference r
tmp.str = null;
root3 = tmp;
return root3;
}
// Driver code
public static void main(String[] args)
{
// Create a Rope tree for first string
Rope root1 = null;
String a = "Hi This is geeksforgeeks. ";
int n1 = a.length();
root1 = createRopeStructure(root1, null, a, 0,
n1 - 1);
// Create a Rope tree for second string
Rope root2 = null;
String b = "You are welcome here.";
int n2 = b.length();
root2 = createRopeStructure(root2, null, b, 0,
n2 - 1);
// Concatenate the two strings in root3.
Rope root3 = null;
root3 = concatenate(root3, root1, root2, n1);
// Print the new concatenated string
printstring(root3);
}
}
Python3
# Python program to concatenate two strings using
# rope data structure.
# Maximum no. of characters to be put in leaf nodes
LEAF_LEN = 2
# Rope structure
class Rope:
def __init__(self):
self.left = None
self.right = None
self.parent = None
self.str = [0]*(LEAF_LEN + 1)
self.lCount = 0
# Function that creates a Rope structure.
# node --> Reference to pointer of current root node
# l --> Left index of current substring (initially 0)
# r --> Right index of current substring (initially n-1)
# par --> Parent of current node (Initially NULL)
def createRopeStructure(node, par, a, l, r):
tmp = Rope()
tmp.left = tmp.right = None
# We put half nodes in left subtree
tmp.parent = par
# If string length is more
if (r-l) > LEAF_LEN:
tmp.str = None
tmp.lCount = (r-l) // 2
node = tmp
m = (l + r) // 2
createRopeStructure(node.left, node, a, l, m)
createRopeStructure(node.right, node, a, m+1, r)
else:
node = tmp
tmp.lCount = (r-l)
j = 0
for i in range(l, r+1):
print(a[i],end = "")
tmp.str[j] = a[i]
j = j + 1
print(end = "")
return node
# Function that prints the string (leaf nodes)
def printstring(r):
if r==None:
return
if r.left==None and r.right==None:
# console.log(r.str);
pass
printstring(r.left)
printstring(r.right)
# Function that efficiently concatenates two strings
# with roots root1 and root2 respectively. n1 is size of
# string represented by root1.
# root3 is going to store root of concatenated Rope.
def concatenate(root3, root1, root2, n1):
# Create a new Rope node, and make root1
# and root2 as children of tmp.
tmp = Rope()
tmp.left = root1
tmp.right = root2
root1.parent = tmp
root2.parent = tmp
tmp.lCount = n1
# Make string of tmp empty and update
# reference r
tmp.str = None
root3 = tmp
return root3
# Driver code
# Create a Rope tree for first string
root1 = None
a = "Hi This is geeksforgeeks. "
n1 = len(a)
root1 = createRopeStructure(root1, None, a, 0, n1-1)
# Create a Rope tree for second string
root2 = None
b = "You are welcome here."
n2 = len(b)
root2 = createRopeStructure(root2, None, b, 0, n2-1)
# Concatenate the two strings in root3.
root3 = None
root3 = concatenate(root3, root1, root2, n1)
# Print the new concatenated string
printstring(root3)
print()
# The code is contributed by Nidhi goel.
JavaScript
// javascript program to concatenate two strings using
// rope data structure.
// Maximum no. of characters to be put in leaf nodes
const LEAF_LEN = 2;
// Rope structure
class Rope
{
constructor(){
this.left = null;
this.right = null;
this.parent = null;
this.str = new Array();
this.lCount = 0;
}
}
// Function that creates a Rope structure.
// node --> Reference to pointer of current root node
// l --> Left index of current substring (initially 0)
// r --> Right index of current substring (initially n-1)
// par --> Parent of current node (Initially NULL)
function createRopeStructure(node, par, a, l, r)
{
let tmp = new Rope();
tmp.left = tmp.right = null;
// We put half nodes in left subtree
tmp.parent = par;
// If string length is more
if ((r-l) > LEAF_LEN)
{
tmp.str = null;
tmp.lCount = Math.floor((r-l)/2);
node = tmp;
let m = Math.floor((l + r)/2);
createRopeStructure(node.left, node, a, l, m);
createRopeStructure(node.right, node, a, m+1, r);
}
else
{
node = tmp;
tmp.lCount = (r-l);
let j = 0;
// tmp.str = new Array(LEAF_LEN);
for (let i=l; i<=r; i++){
document.write(a[i]);
tmp.str[j++] = a[i];
}
document.write("\n");
}
return node;
}
// Function that prints the string (leaf nodes)
function printstring(r)
{
if (r==null)
return;
if (r.left==null && r.right==null){
// console.log(r.str);
}
printstring(r.left);
printstring(r.right);
}
// Function that efficiently concatenates two strings
// with roots root1 and root2 respectively. n1 is size of
// string represented by root1.
// root3 is going to store root of concatenated Rope.
function concatenate(root3, root1, root2, n1)
{
// Create a new Rope node, and make root1
// and root2 as children of tmp.
let tmp = new Rope();
tmp.left = root1;
tmp.right = root2;
root1.parent = tmp;
root2.parent = tmp;
tmp.lCount = n1;
// Make string of tmp empty and update
// reference r
tmp.str = null;
root3 = tmp;
return root3;
}
// Driver code
// Create a Rope tree for first string
let root1 = null;
let a = "Hi This is geeksforgeeks. ";
let n1 = a.length;
root1 = createRopeStructure(root1, null, a, 0, n1-1);
// Create a Rope tree for second string
let root2 = null;
let b = "You are welcome here.";
let n2 = b.length;
root2 = createRopeStructure(root2, null, b, 0, n2-1);
// Concatenate the two strings in root3.
let root3 = null;
root3 = concatenate(root3, root1, root2, n1);
// Print the new concatenated string
printstring(root3);
console.log();
// The code is contributed by Nidhi goel.
C#
using System;
using System.Collections.Generic;
// Rope structure
class Rope
{
public Rope left;
public Rope right;
public Rope parent;
public List<char> str;
public int lCount;
public Rope()
{
this.left = null;
this.right = null;
this.parent = null;
this.str = new List<char>();
this.lCount = 0;
}
}
class MainClass
{
// Maximum no. of characters to be put in leaf nodes
static readonly int LEAF_LEN = 2;
// Function that creates a Rope structure.
// node --> Reference to pointer of current root node
// l --> Left index of current substring (initially
// 0) r --> Right index of current substring
// (initially n-1) par --> Parent of current node
// (Initially NULL)
static Rope CreateRopeStructure(ref Rope node, Rope par, string a, int l, int r)
{
Rope tmp = new Rope();
tmp.left = tmp.right = null;
// We put half nodes in left subtree
tmp.parent = par;
if ((r - l) > LEAF_LEN)
{
tmp.str = null;
tmp.lCount = (int)Math.Floor((r - l) / 2.0);
node = tmp;
int m = (int)Math.Floor((l + r) / 2.0);
node.left = CreateRopeStructure(ref node.left, node, a, l, m);
node.right = CreateRopeStructure(ref node.right, node, a, m + 1, r);
}
else
{
node = tmp;
tmp.lCount = (r - l);
for (int i = l; i <= r; i++)
{
tmp.str.Add(a[i]);
}
}
return node;
}
// Function that prints the string (leaf nodes)
static void PrintString(Rope r)
{
if (r == null)
{
return;
}
if (r.left == null && r.right == null)
{
foreach (char c in r.str)
{
Console.Write(c);
}
}
PrintString(r.left);
PrintString(r.right);
}
// Function that efficiently concatenates two strings
// with roots root1 and root2 respectively. n1 is size
// of string represented by root1. root3 is going to
// store root of concatenated Rope.
static Rope Concatenate(Rope root3, Rope root1, Rope root2, int n1)
{
// Create a new Rope node, and make root1
// and root2 as children of tmp.
Rope tmp = new Rope();
tmp.left = root1;
tmp.right = root2;
root1.parent = tmp;
root2.parent = tmp;
tmp.lCount = n1;
// Make string of tmp empty and update
// reference r
tmp.str = null;
root3 = tmp;
return root3;
}
// Driver code
public static void Main(string[] args)
{
// Create a Rope tree for first string
Rope root1 = null;
string a = "Hi This is geeksforgeeks. ";
int n1 = a.Length;
root1 = CreateRopeStructure(ref root1, null, a, 0, n1 - 1);
// Create a Rope tree for second string
Rope root2 = null;
String b = "You are welcome here.";
int n2 = b.Length;
root2 = CreateRopeStructure(ref root2, null, b, 0,
n2 - 1);
// Concatenate the two strings in root3.
Rope root3 = null;
root3 = Concatenate(root3, root1, root2, n1);
// Print the new concatenated string
PrintString(root3);
}
}
Output:
Hi This is geeksforgeeks. You are welcome here.
Time Complexity: O(1)
Auxiliary Space: O(1)
Similar Reads
Concatenation of two strings in PHP In this article, we will concatenate two strings in PHP. There are two string operators. The first is the concatenation operator ('.'), which returns the concatenation of its right and left arguments. The second is the concatenating assignment operator ('.='), which appends the argument on the right
2 min read
String in Data Structure A string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
3 min read
Print Concatenation of Zig-Zag String in 'n' Rows Given a string and number of rows 'n'. Print the string formed by concatenating n rows when input string is written in row-wise Zig-Zag fashion. Examples: Input: str = "ABCDEFGH" n = 2 Output: "ACEGBDFH" Explanation: Let us write input string in Zig-Zag fashion in 2 rows. A C E G B D F H Now concate
12 min read
Maximum Strings Concatenation Given an array of strings, where each string consists of lowercase characters from a to j. You need to find the maximum number of strings that can be concatenated together such that the resulting string can be made out of exactly k distinct characters. Example: Input: n = 4, str = [ "abc", "de", "fg
8 min read
Lexicographical concatenation of all substrings of a string Given a string, find the concatenation of all substrings in lexicographic order.Examples:Input : s = "abc"Output : aababcbbccThe substrings of s in lexicographic order are "a", "b", "c", "ab", "abc", "bc". Concatenation of substrings is "a"+"ab"+"abc"+"b"+"bc"+"c" = "aababcbbcc".Input : s = "cba"Out
7 min read