sciPy stats.describe() function | Python Last Updated : 10 Feb, 2019 Comments Improve Suggest changes Like Article Like Report scipy.stats.describe(array, axis=0) computes the descriptive statistics of the passed array elements along the specified axis of the array. Parameters : array: Input array or object having the elements to calculate the statistics. axis: Axis along which the statistics is to be computed. By default axis = 0. Returns : Statistics of the array elements based on the set parameters. Code #1: Python3 # FInding statistics of data from scipy import stats arr1 = [9, 3, 27] desc = stats.describe(arr1) print("No. of observations is :\n", desc) Output: No. of observations is : DescribeResult(nobs=3, minmax=(3, 27), mean=13.0, variance=156.0, skewness=0.5280049792181878, kurtosis=-1.5) Code #2: With multi-dimensional data Python3 # FInding statistics of data from scipy import stats arr1 = [[1, 3, 27], [3, 4, 6], [7, 6, 3], [3, 6, 8]] desc = stats.describe(arr1, axis = 0) print("No. of observations at axis = 0 :\n\n", desc) print("\n\nNo. of observations at axis = 1 :\n\n", desc) Output: No. of observations at axis = 0 : DescribeResult(nobs=4, minmax=(array([1, 3, 3]), array([ 7, 6, 27])), mean=array([ 3.5 , 4.75, 11. ]), variance=array([ 6.33333333, 2.25 , 118. ]), skewness=array([ 0.65202366, -0.21383343, 1.03055786]), kurtosis=array([-0.90304709, -1.72016461, -0.75485971])) No. of observations at axis = 1 : DescribeResult(nobs=4, minmax=(array([1, 3, 3]), array([ 7, 6, 27])), mean=array([ 3.5 , 4.75, 11. ]), variance=array([ 6.33333333, 2.25 , 118. ]), skewness=array([ 0.65202366, -0.21383343, 1.03055786]), kurtosis=array([-0.90304709, -1.72016461, -0.75485971])) Comment More infoAdvertise with us Next Article sciPy stats.describe() function | Python V vishal3096 Follow Improve Article Tags : Python Python-scipy Python scipy-stats-functions Practice Tags : python Similar Reads scipy stats.kurtosis() function | Python scipy.stats.kurtosis(array, axis=0, fisher=True, bias=True) function calculates the kurtosis (Fisher or Pearson) of a data set. It is the fourth central moment divided by the square of the variance. It is a measure of the "tailedness" i.e. descriptor of shape of probability distribution of a real-va 2 min read scipy stats.skewtest() function | Python scipy.stats.skewtest(array, axis=0) function test whether the skew is different from the normal distribution. This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution. Its formula - Parameter 1 min read scipy stats.normaltest() function | Python scipy.stats.normaltest(array, axis=0) function test whether the sample is different from the normal distribution. This function tests the null hypothesis of the population that the sample was drawn from. Parameters : array : Input array or object having the elements. axis : Axis along which the norm 1 min read scipy.stats.expon() | Python scipy.stats.expon() is an exponential continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale p 2 min read scipy stats.chi() | Python scipy.stats.chi() is an chi continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale parameter. 2 min read scipy stats.cosine() | Python scipy.stats.cosine() is an cosine continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale paramet 2 min read scipy stats.f() | Python scipy.stats.f() is an F continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability a, b : shape parameters x : quantiles loc : [optional] location parameter. Default = 0 scale : [optiona 2 min read scipy stats.kurtosistest() function | Python scipy.stats.kurtosistest(array, axis=0) function test whether the given data set has normal kurtosis (Fisher or Pearson) or not. What is Kurtosis ? It is the fourth central moment divided by the square of the variance. It is a measure of the "tailedness" i.e. descriptor of shape of probability distr 1 min read scipy.stats.chi2() | Python scipy.stats.chi2() is an chi square continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale param 2 min read scipy stats.fisk() | Python scipy.stats.fisk() is an fisk continuous random variable. It is also known as the log-logistic distribution, and equals the Burr distribution with d == 1 and is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x 2 min read Like