scipy stats.erlang() | Python Last Updated : 20 Mar, 2019 Comments Improve Suggest changes Like Article Like Report scipy.stats.erlang() : is an Erlang continuous random variable that is defined with a standard format and some shape parameters to complete its specification. it is a special case of the Gamma distribution. Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : erlang continuous random variable Code #1 : Creating erlang continuous random variable Python3 from scipy.stats import erlang numargs = erlang.numargs [a] = [0.6, ] * numargs rv = erlang(a) print ("RV : \n", rv) Output : RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D544FBC88> Code #2 : erlang random variates and probability distribution. Python3 import numpy as np quantile = np.arange (0.01, 1, 0.1) # Random Variates R = erlang.rvs(a, scale = 2, size = 10) print ("Random Variates : \n", R) # PDF R = erlang.pdf(a, quantile, loc = 0, scale = 1) print ("\nProbability Distribution : \n", R) Output : Random Variates : [5.65708510e+00 5.16045580e+00 1.02056956e-01 3.64349340e-01 5.65593073e+00 2.27100280e+00 9.77623414e-04 2.01994399e-01 8.84331471e-01 2.20817630e+00] Probability Distribution : [0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91] Code #3 : Graphical Representation. Python3 import numpy as np import matplotlib.pyplot as plt distribution = np.linspace(0, np.minimum(rv.dist.b, 5)) print("Distribution : \n", distribution) plot = plt.plot(distribution, rv.pdf(distribution)) Output : Distribution : Distribution : [0. 0.10204082 0.20408163 0.30612245 0.40816327 0.51020408 0.6122449 0.71428571 0.81632653 0.91836735 1.02040816 1.12244898 1.2244898 1.32653061 1.42857143 1.53061224 1.63265306 1.73469388 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857 3.67346939 3.7755102 3.87755102 3.97959184 4.08163265 4.18367347 4.28571429 4.3877551 4.48979592 4.59183673 4.69387755 4.79591837 4.89795918 5. ] Code #4 : Varying Positional Arguments Python3 import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 5, 100) # Varying positional arguments y1 = erlang.pdf(x, 2, 6) y2 = erlang.pdf(x, 1, 4) plt.plot(x, y1, "*", x, y2, "r--") Output : Comment More infoAdvertise with us Next Article scipy stats.erlang() | Python V vishal3096 Follow Improve Article Tags : Python Python-scipy Python scipy-stats-functions Practice Tags : python Similar Reads scipy.stats.expon() | Python scipy.stats.expon() is an exponential continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale p 2 min read sciPy stats.alpha() | Python scipy.stats.alpha() is an alpha continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles a : shape parameter loc : [optional] location parameter. Default = 0 scale : [opt 1 min read scipy stats.f() | Python scipy.stats.f() is an F continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability a, b : shape parameters x : quantiles loc : [optional] location parameter. Default = 0 scale : [optiona 2 min read scipy stats.gompertz() | Python scipy.stats.gompertz() is an Gompertz (or truncated Gumbel) continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : -> q : lower and upper tail probability -> x : quantiles -> loc : [optional]location parameter. 2 min read sympy.stats.Erlang() in python With the help of sympy.stats.Erlang() method, we can get the continuous random variable representing the erlang distribution. Syntax : sympy.stats.Erlang(name, k, l) Where, k is the positive integer and l is a real number greater than 0. Return : Return continuous random variable. Example #1 : In th 1 min read sciPy stats.describe() function | Python scipy.stats.describe(array, axis=0) computes the descriptive statistics of the passed array elements along the specified axis of the array. Parameters : array: Input array or object having the elements to calculate the statistics. axis: Axis along which the statistics is to be computed. By default a 2 min read sciPy stats.sem() function | Python scipy.stats.sem(arr, axis=0, ddof=0) function is used to compute the standard error of the mean of the input data. Parameters : arr : [array_like]Input array or object having the elements to calculate the standard error. axis : Axis along which the mean is to be computed. By default axis = 0. ddof : 1 min read Python | Scipy stats.hypsecant.stats() method With the help of stats.hypsecant.stats() method, we can get the value of Mean(âmâ), variance(âvâ), skew(âsâ), and/or kurtosis(âkâ) by using stats.hypsecant.stats() method. Syntax : stats.hypsecant.stats(beta, moments) Return : Return the value of mean, variance, skew and kurtosis. Example #1 : In th 1 min read sciPy stats.signaltonoise() function | Python scipy.stats.signaltonoise(arr, axis=0, ddof=0) function computes the signal-to-noise ratio of the input data. Its formula : Parameters :arr : [array_like]Input array or object having the elements to calculate the signal-to-noise ratio axis : Axis along which the mean is to be computed. By default ax 2 min read statistics mean() function - Python The mean() function from Pythonâs statistics module is used to calculate the average of a set of numeric values. It adds up all the values in a list and divides the total by the number of elements. For example, if we have a list [2, 4, 6, 8], the mean would be (2 + 4 + 6 + 8) / 4 = 5.0. This functio 4 min read Like