Open In App

scipy.stats.expon() | Python

Last Updated : 20 Mar, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.expon() is an exponential continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : exponential continuous random variable
Code #1 : Creating exponential continuous random variable Python3
 
from scipy.stats import expon 

numargs = expon.numargs
[ ] = [0.6, ] * numargs
rv = expon( )

print ("RV : \n", rv) 
Output :
RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D56531CC0>
Code #2 : exponential random variates and probability distribution. Python3
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
 
# Random Variates
R = expon.rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)

# PDF
R = expon.pdf(quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)
Output :
Random Variates : 
 [2.50259466e-04 4.32311862e+00 8.22833503e-01 1.63374263e+00
 4.46784023e+00 3.56781485e+00 3.95381396e+00 1.17623772e+00
 3.21834266e-02 4.14778445e+00]

Probability Distribution : 
 [0.99004983 0.89583414 0.81058425 0.73344696 0.66365025 0.60049558
 0.54335087 0.4916442  0.44485807 0.40252422]
 
Code #3 : Graphical Representation. Python3
import numpy as np
import matplotlib.pyplot as plt

distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)

plot = plt.plot(distribution, rv.pdf(distribution))
Output :
Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]
Code #4 : Varying Positional Arguments Python3
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 5, 100)

# Varying positional arguments
y1 = expon.pdf(x, 2, 6)
y2 = expon.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")
Output :

Next Article
Practice Tags :

Similar Reads