Open In App

scipy stats.fisk() | Python

Last Updated : 20 Mar, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.fisk() is an fisk continuous random variable. It is also known as the log-logistic distribution, and equals the Burr distribution with d == 1 and is defined with a standard format and some shape parameters to complete its specification.
Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : fisk continuous random variable
Code #1 : Creating fisk continuous random variable Python3
from scipy.stats import fisk

numargs = fisk.numargs
[a] = [0.7, ] * numargs
rv = fisk(a)

print ("RV : \n", rv)  
Output :
RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D568102B0>
Code #2 : fisk random variates and probability distribution. Python3
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
 
# Random Variates
R = fisk.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)

# PDF
R = fisk.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)
Output :
Random Variates : 
 [7.79438195 3.97977194 3.20802248 3.02623867 9.36996936 8.54462365
 0.47436888 0.4645239  2.1188909  1.49435511]

Probability Distribution : 
 [0.00357142 0.0392706  0.07489491 0.11037659 0.1456485  0.18064439
 0.21529915 0.2495491  0.28333225 0.31658852]
 
Code #3 : Graphical Representation. Python3
import numpy as np
import matplotlib.pyplot as plt

distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)

plot = plt.plot(distribution, rv.pdf(distribution))
Output :
Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]
Code #4 : Varying Positional Arguments Python3
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 5, 100)

# Varying positional arguments
y1 = fisk.pdf(x, 1, 3)
y2 = fisk.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")
Output :

Next Article
Practice Tags :

Similar Reads