Sorted Linked List to Balanced BST
Last Updated :
23 Jul, 2025
Given a Singly Linked List which has data members sorted in ascending order. Construct a Balanced Binary Search Tree which has same data members as the given Linked List.
Examples:
Input: Linked List 1->2->3
Output: A Balanced BST
2
/ \
1 3
Input: Linked List 1->2->3->4->5->6->7
Output: A Balanced BST
4
/ \
2 6
/ \ / \
1 3 5 7
Input: Linked List 1->2->3->4
Output: A Balanced BST
3
/ \
2 4
/
1
Input: Linked List 1->2->3->4->5->6
Output: A Balanced BST
4
/ \
2 6
/ \ /
1 3 5
Method 1 (Simple)
Following is a simple algorithm where we first find the middle node of the list and make it the root of the tree to be constructed.
1) Get the Middle of the linked list and make it root.
2) Recursively do same for the left half and right half.
a) Get the middle of the left half and make it left child of the root
created in step 1.
b) Get the middle of right half and make it the right child of the
root created in step 1.
Time complexity: O(nLogn) where n is the number of nodes in Linked List.
Method 2 (Tricky)
Method 1 constructs the tree from root to leaves. In this method, we construct from leaves to root. The idea is to insert nodes in BST in the same order as they appear in Linked List so that the tree can be constructed in O(n) time complexity. We first count the number of nodes in the given Linked List. Let the count be n. After counting nodes, we take left n/2 nodes and recursively construct the left subtree. After left subtree is constructed, we allocate memory for root and link the left subtree with root. Finally, we recursively construct the right subtree and link it with root.
While constructing the BST, we also keep moving the list head pointer to next so that we have the appropriate pointer in each recursive call.
Following is implementation of method 2. The main code which creates Balanced BST is highlighted.
C++
// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
/* Link list node */
class LNode
{
public:
int data;
LNode* next;
};
/* A Binary Tree node */
class TNode
{
public:
int data;
TNode* left;
TNode* right;
};
TNode* newNode(int data);
int countLNodes(LNode *head);
TNode* sortedListToBSTRecur(LNode **head_ref, int n);
/* This function counts the number of
nodes in Linked List and then calls
sortedListToBSTRecur() to construct BST */
TNode* sortedListToBST(LNode *head)
{
/*Count the number of nodes in Linked List */
int n = countLNodes(head);
/* Construct BST */
return sortedListToBSTRecur(&head, n);
}
/* The main function that constructs
balanced BST and returns root of it.
head_ref --> Pointer to pointer to
head node of linked list n --> No.
of nodes in Linked List */
TNode* sortedListToBSTRecur(LNode **head_ref, int n)
{
/* Base Case */
if (n <= 0)
return NULL;
/* Recursively construct the left subtree */
TNode *left = sortedListToBSTRecur(head_ref, n/2);
/* Allocate memory for root, and
link the above constructed left
subtree with root */
TNode *root = newNode((*head_ref)->data);
root->left = left;
/* Change head pointer of Linked List
for parent recursive calls */
*head_ref = (*head_ref)->next;
/* Recursively construct the right
subtree and link it with root
The number of nodes in right subtree
is total nodes - nodes in
left subtree - 1 (for root) which is n-n/2-1*/
root->right = sortedListToBSTRecur(head_ref, n - n / 2 - 1);
return root;
}
/* UTILITY FUNCTIONS */
/* A utility function that returns
count of nodes in a given Linked List */
int countLNodes(LNode *head)
{
int count = 0;
LNode *temp = head;
while(temp)
{
temp = temp->next;
count++;
}
return count;
}
/* Function to insert a node
at the beginning of the linked list */
void push(LNode** head_ref, int new_data)
{
/* allocate node */
LNode* new_node = new LNode();
/* put in the data */
new_node->data = new_data;
/* link the old list of the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in a given linked list */
void printList(LNode *node)
{
while(node!=NULL)
{
cout << node->data << " ";
node = node->next;
}
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
TNode* newNode(int data)
{
TNode* node = new TNode();
node->data = data;
node->left = NULL;
node->right = NULL;
return node;
}
/* A utility function to
print preorder traversal of BST */
void preOrder(TNode* node)
{
if (node == NULL)
return;
cout<<node->data<<" ";
preOrder(node->left);
preOrder(node->right);
}
/* Driver code*/
int main()
{
/* Start with the empty list */
LNode* head = NULL;
/* Let us create a sorted linked list to test the functions
Created linked list will be 1->2->3->4->5->6->7 */
push(&head, 7);
push(&head, 6);
push(&head, 5);
push(&head, 4);
push(&head, 3);
push(&head, 2);
push(&head, 1);
cout<<"Given Linked List ";
printList(head);
/* Convert List to BST */
TNode *root = sortedListToBST(head);
cout<<"\nPreOrder Traversal of constructed BST ";
preOrder(root);
return 0;
}
// This code is contributed by rathbhupendra
C
#include<stdio.h>
#include<stdlib.h>
/* Link list node */
struct LNode
{
int data;
struct LNode* next;
};
/* A Binary Tree node */
struct TNode
{
int data;
struct TNode* left;
struct TNode* right;
};
struct TNode* newNode(int data);
int countLNodes(struct LNode *head);
struct TNode* sortedListToBSTRecur(struct LNode **head_ref, int n);
/* This function counts the number of nodes in Linked List and then calls
sortedListToBSTRecur() to construct BST */
struct TNode* sortedListToBST(struct LNode *head)
{
/*Count the number of nodes in Linked List */
int n = countLNodes(head);
/* Construct BST */
return sortedListToBSTRecur(&head, n);
}
/* The main function that constructs balanced BST and returns root of it.
head_ref --> Pointer to pointer to head node of linked list
n --> No. of nodes in Linked List */
struct TNode* sortedListToBSTRecur(struct LNode **head_ref, int n)
{
/* Base Case */
if (n <= 0)
return NULL;
/* Recursively construct the left subtree */
struct TNode *left = sortedListToBSTRecur(head_ref, n/2);
/* Allocate memory for root, and link the above constructed left
subtree with root */
struct TNode *root = newNode((*head_ref)->data);
root->left = left;
/* Change head pointer of Linked List for parent recursive calls */
*head_ref = (*head_ref)->next;
/* Recursively construct the right subtree and link it with root
The number of nodes in right subtree is total nodes - nodes in
left subtree - 1 (for root) which is n-n/2-1*/
root->right = sortedListToBSTRecur(head_ref, n-n/2-1);
return root;
}
/* UTILITY FUNCTIONS */
/* A utility function that returns count of nodes in a given Linked List */
int countLNodes(struct LNode *head)
{
int count = 0;
struct LNode *temp = head;
while(temp)
{
temp = temp->next;
count++;
}
return count;
}
/* Function to insert a node at the beginning of the linked list */
void push(struct LNode** head_ref, int new_data)
{
/* allocate node */
struct LNode* new_node =
(struct LNode*) malloc(sizeof(struct LNode));
/* put in the data */
new_node->data = new_data;
/* link the old list of the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
/* Function to print nodes in a given linked list */
void printList(struct LNode *node)
{
while(node!=NULL)
{
printf("%d ", node->data);
node = node->next;
}
}
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct TNode* newNode(int data)
{
struct TNode* node = (struct TNode*)
malloc(sizeof(struct TNode));
node->data = data;
node->left = NULL;
node->right = NULL;
return node;
}
/* A utility function to print preorder traversal of BST */
void preOrder(struct TNode* node)
{
if (node == NULL)
return;
printf("%d ", node->data);
preOrder(node->left);
preOrder(node->right);
}
/* Driver program to test above functions*/
int main()
{
/* Start with the empty list */
struct LNode* head = NULL;
/* Let us create a sorted linked list to test the functions
Created linked list will be 1->2->3->4->5->6->7 */
push(&head, 7);
push(&head, 6);
push(&head, 5);
push(&head, 4);
push(&head, 3);
push(&head, 2);
push(&head, 1);
printf("\n Given Linked List ");
printList(head);
/* Convert List to BST */
struct TNode *root = sortedListToBST(head);
printf("\n PreOrder Traversal of constructed BST ");
preOrder(root);
return 0;
}
Java
class LinkedList {
/* head node of link list */
static LNode head;
/* Link list Node */
class LNode
{
int data;
LNode next, prev;
LNode(int d)
{
data = d;
next = prev = null;
}
}
/* A Binary Tree Node */
class TNode
{
int data;
TNode left, right;
TNode(int d)
{
data = d;
left = right = null;
}
}
/* This function counts the number of nodes in Linked List
and then calls sortedListToBSTRecur() to construct BST */
TNode sortedListToBST()
{
/*Count the number of nodes in Linked List */
int n = countNodes(head);
/* Construct BST */
return sortedListToBSTRecur(n);
}
/* The main function that constructs balanced BST and
returns root of it.
n --> No. of nodes in the Doubly Linked List */
TNode sortedListToBSTRecur(int n)
{
/* Base Case */
if (n <= 0)
return null;
/* Recursively construct the left subtree */
TNode left = sortedListToBSTRecur(n / 2);
/* head_ref now refers to middle node,
make middle node as root of BST*/
TNode root = new TNode(head.data);
// Set pointer to left subtree
root.left = left;
/* Change head pointer of Linked List for parent
recursive calls */
head = head.next;
/* Recursively construct the right subtree and link it
with root. The number of nodes in right subtree is
total nodes - nodes in left subtree - 1 (for root) */
root.right = sortedListToBSTRecur(n - n / 2 - 1);
return root;
}
/* UTILITY FUNCTIONS */
/* A utility function that returns count of nodes in a
given Linked List */
int countNodes(LNode head)
{
int count = 0;
LNode temp = head;
while (temp != null)
{
temp = temp.next;
count++;
}
return count;
}
/* Function to insert a node at the beginning of
the Doubly Linked List */
void push(int new_data)
{
/* allocate node */
LNode new_node = new LNode(new_data);
/* since we are adding at the beginning,
prev is always NULL */
new_node.prev = null;
/* link the old list of the new node */
new_node.next = head;
/* change prev of head node to new node */
if (head != null)
head.prev = new_node;
/* move the head to point to the new node */
head = new_node;
}
/* Function to print nodes in a given linked list */
void printList(LNode node)
{
while (node != null)
{
System.out.print(node.data + " ");
node = node.next;
}
}
/* A utility function to print preorder traversal of BST */
void preOrder(TNode node)
{
if (node == null)
return;
System.out.print(node.data + " ");
preOrder(node.left);
preOrder(node.right);
}
/* Driver program to test above functions */
public static void main(String[] args) {
LinkedList llist = new LinkedList();
/* Let us create a sorted linked list to test the functions
Created linked list will be 7->6->5->4->3->2->1 */
llist.push(7);
llist.push(6);
llist.push(5);
llist.push(4);
llist.push(3);
llist.push(2);
llist.push(1);
System.out.println("Given Linked List ");
llist.printList(head);
/* Convert List to BST */
TNode root = llist.sortedListToBST();
System.out.println("");
System.out.println("Pre-Order Traversal of constructed BST ");
llist.preOrder(root);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)
Python3
# Python3 implementation of above approach
# Link list node
class LNode :
def __init__(self):
self.data = None
self.next = None
# A Binary Tree node
class TNode :
def __init__(self):
self.data = None
self.left = None
self.right = None
head = None
# This function counts the number of
# nodes in Linked List and then calls
# sortedListToBSTRecur() to construct BST
def sortedListToBST():
global head
# Count the number of nodes in Linked List
n = countLNodes(head)
# Construct BST
return sortedListToBSTRecur(n)
# The main function that constructs
# balanced BST and returns root of it.
# head -. Pointer to pointer to
# head node of linked list n -. No.
# of nodes in Linked List
def sortedListToBSTRecur( n) :
global head
# Base Case
if (n <= 0) :
return None
# Recursively construct the left subtree
left = sortedListToBSTRecur( int(n/2))
# Allocate memory for root, and
# link the above constructed left
# subtree with root
root = newNode((head).data)
root.left = left
# Change head pointer of Linked List
# for parent recursive calls
head = (head).next
# Recursively construct the right
# subtree and link it with root
# The number of nodes in right subtree
# is total nodes - nodes in
# left subtree - 1 (for root) which is n-n/2-1
root.right = sortedListToBSTRecur( n - int(n/2) - 1)
return root
# UTILITY FUNCTIONS
# A utility function that returns
# count of nodes in a given Linked List
def countLNodes(head) :
count = 0
temp = head
while(temp != None):
temp = temp.next
count = count + 1
return count
# Function to insert a node
#at the beginning of the linked list
def push(head, new_data) :
# allocate node
new_node = LNode()
# put in the data
new_node.data = new_data
# link the old list of the new node
new_node.next = (head)
# move the head to point to the new node
(head) = new_node
return head
# Function to print nodes in a given linked list
def printList(node):
while(node != None):
print( node.data ,end= " ")
node = node.next
# Helper function that allocates a new node with the
# given data and None left and right pointers.
def newNode(data) :
node = TNode()
node.data = data
node.left = None
node.right = None
return node
# A utility function to
# print preorder traversal of BST
def preOrder( node) :
if (node == None) :
return
print(node.data, end = " " )
preOrder(node.left)
preOrder(node.right)
# Driver code
# Start with the empty list
head = None
# Let us create a sorted linked list to test the functions
# Created linked list will be 1.2.3.4.5.6.7
head = push(head, 7)
head = push(head, 6)
head = push(head, 5)
head = push(head, 4)
head = push(head, 3)
head = push(head, 2)
head = push(head, 1)
print("Given Linked List " )
printList(head)
# Convert List to BST
root = sortedListToBST()
print("\nPreOrder Traversal of constructed BST ")
preOrder(root)
# This code is contributed by Arnab Kundu
C#
// C# implementation of above approach
using System;
public class LinkedList
{
/* head node of link list */
static LNode head;
/* Link list Node */
class LNode
{
public int data;
public LNode next, prev;
public LNode(int d)
{
data = d;
next = prev = null;
}
}
/* A Binary Tree Node */
class TNode
{
public int data;
public TNode left, right;
public TNode(int d)
{
data = d;
left = right = null;
}
}
/* This function counts the number
of nodes in Linked List and then calls
sortedListToBSTRecur() to construct BST */
TNode sortedListToBST()
{
/*Count the number of nodes in Linked List */
int n = countNodes(head);
/* Construct BST */
return sortedListToBSTRecur(n);
}
/* The main function that constructs
balanced BST and returns root of it.
n --> No. of nodes in the Doubly Linked List */
TNode sortedListToBSTRecur(int n)
{
/* Base Case */
if (n <= 0)
return null;
/* Recursively construct the left subtree */
TNode left = sortedListToBSTRecur(n / 2);
/* head_ref now refers to middle node,
make middle node as root of BST*/
TNode root = new TNode(head.data);
// Set pointer to left subtree
root.left = left;
/* Change head pointer of Linked List
for parent recursive calls */
head = head.next;
/* Recursively construct the
right subtree and link it
with root. The number of
nodes in right subtree is
total nodes - nodes in left
subtree - 1 (for root) */
root.right = sortedListToBSTRecur(n - n / 2 - 1);
return root;
}
/* UTILITY FUNCTIONS */
/* A utility function that returns count
of nodes in a given Linked List */
int countNodes(LNode head)
{
int count = 0;
LNode temp = head;
while (temp != null)
{
temp = temp.next;
count++;
}
return count;
}
/* Function to insert a node at the beginning of
the Doubly Linked List */
void push(int new_data)
{
/* allocate node */
LNode new_node = new LNode(new_data);
/* since we are adding at the beginning,
prev is always NULL */
new_node.prev = null;
/* link the old list of the new node */
new_node.next = head;
/* change prev of head node to new node */
if (head != null)
head.prev = new_node;
/* move the head to point to the new node */
head = new_node;
}
/* Function to print nodes in a given linked list */
void printList(LNode node)
{
while (node != null)
{
Console.Write(node.data + " ");
node = node.next;
}
}
/* A utility function to print
preorder traversal of BST */
void preOrder(TNode node)
{
if (node == null)
return;
Console.Write(node.data + " ");
preOrder(node.left);
preOrder(node.right);
}
/* Driver code */
public static void Main(String[] args)
{
LinkedList llist = new LinkedList();
/* Let us create a sorted
linked list to test the functions
Created linked list will be
7->6->5->4->3->2->1 */
llist.push(7);
llist.push(6);
llist.push(5);
llist.push(4);
llist.push(3);
llist.push(2);
llist.push(1);
Console.WriteLine("Given Linked List ");
llist.printList(head);
/* Convert List to BST */
TNode root = llist.sortedListToBST();
Console.WriteLine("");
Console.WriteLine("Pre-Order Traversal of constructed BST ");
llist.preOrder(root);
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// JavaScript implementation of above approach
/* head node of link list */
var head = null;
/* Link list Node */
class LNode
{
constructor(d)
{
this.data = d;
this.next = null;
this.prev = null;
}
}
/* A Binary Tree Node */
class TNode
{
constructor(d)
{
this.data = d;
this.left = null;
this.right = null;
}
}
/* This function counts the number
of nodes in Linked List and then calls
sortedListToBSTRecur() to construct BST */
function sortedListToBST()
{
/*Count the number of nodes in Linked List */
var n = countNodes(head);
/* Construct BST */
return sortedListToBSTRecur(n);
}
/* The main function that constructs
balanced BST and returns root of it.
n --> No. of nodes in the Doubly Linked List */
function sortedListToBSTRecur(n)
{
/* Base Case */
if (n <= 0)
return null;
/* Recursively construct the left subtree */
var left = sortedListToBSTRecur(parseInt(n / 2));
/* head_ref now refers to middle node,
make middle node as root of BST*/
var root = new TNode(head.data);
// Set pointer to left subtree
root.left = left;
/* Change head pointer of Linked List
for parent recursive calls */
head = head.next;
/* Recursively construct the
right subtree and link it
with root. The number of
nodes in right subtree is
total nodes - nodes in left
subtree - 1 (for root) */
root.right = sortedListToBSTRecur(n - parseInt(n / 2) - 1);
return root;
}
/* UTILITY FUNCTIONS */
/* A utility function that returns count
of nodes in a given Linked List */
function countNodes(head)
{
var count = 0;
var temp = head;
while (temp != null)
{
temp = temp.next;
count++;
}
return count;
}
/* Function to insert a node at the beginning of
the Doubly Linked List */
function push( new_data)
{
/* allocate node */
var new_node = new LNode(new_data);
/* since we are adding at the beginning,
prev is always NULL */
new_node.prev = null;
/* link the old list of the new node */
new_node.next = head;
/* change prev of head node to new node */
if (head != null)
head.prev = new_node;
/* move the head to point to the new node */
head = new_node;
}
/* Function to print nodes in a given linked list */
function printList( node)
{
while (node != null)
{
document.write(node.data + " ");
node = node.next;
}
}
/* A utility function to print
preorder traversal of BST */
function preOrder(node)
{
if (node == null)
return;
document.write(node.data + " ");
preOrder(node.left);
preOrder(node.right);
}
/* Driver code */
/* Let us create a sorted
linked list to test the functions
Created linked list will be
7->6->5->4->3->2->1 */
push(7);
push(6);
push(5);
push(4);
push(3);
push(2);
push(1);
document.write("Given Linked List ");
printList(head);
/* Convert List to BST */
var root = sortedListToBST();
document.write("<br>");
document.write("Pre-Order Traversal of constructed BST ");
preOrder(root);
</script>
OutputGiven Linked List 1 2 3 4 5 6 7
PreOrder Traversal of constructed BST 4 2 1 3 6 5 7
Time Complexity: O(n)
Auxiliary Space: O(logn)
Another Approach(using extra space):
Follow the below steps to solve this problem:
1) Create a array and store all the elements of linked list.
2) Now find the middle element of the linked list and create it root of the tree and call for left array and right array for left and right child.
3) Now recursively repeat above approach until the start becomes greater than end.
4) Now print the preorder traversal of created tree.
Below is the implementation of above approach:
C++
// C++ implementation of above approach
#include<bits/stdc++.h>
using namespace std;
// link list node
struct LNode{
int data;
LNode* next;
LNode(int data){
this->data = data;
this->next = NULL;
}
};
// binary tree node
struct TNode{
int data;
TNode* left;
TNode* right;
TNode(int data){
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
// function to print nodes in a given linked list
void printList(LNode* node){
while(node != NULL){
cout<<node->data<<" ";
node = node->next;
}
}
void preOrder(TNode* root){
if(root == NULL) return;
cout<<root->data<<" ";
preOrder(root->left);
preOrder(root->right);
}
TNode* sortedListToBSTRecur(vector<int>& vec, int start, int end){
if(start > end) return NULL;
int mid = start + (end-start)/2;
if((end - start)%2 != 0) mid = mid+1;
TNode* root = new TNode(vec[mid]);
root->left = sortedListToBSTRecur(vec, start, mid-1);
root->right = sortedListToBSTRecur(vec, mid+1, end);
return root;
}
TNode* sortedListToBST(LNode* head){
vector<int> vec;
LNode* temp = head;
while(temp != NULL){
vec.push_back(temp->data);
temp = temp->next;
}
return sortedListToBSTRecur(vec, 0, vec.size()-1);
}
int main(){
// Let us create a sorted linked list to test the functions
// Created linked list will be 1->2->3->4->5->6->7
LNode* head = new LNode(1);
head->next = new LNode(2);
head->next->next = new LNode(3);
head->next->next->next = new LNode(4);
head->next->next->next->next = new LNode(5);
head->next->next->next->next->next = new LNode(6);
head->next->next->next->next->next->next = new LNode(7);
cout<<"Given Linked List: "<<endl;
printList(head);
cout<<endl;
// convert list to bst
TNode* root = sortedListToBST(head);
cout<<"Peorder Traversal of constructed BST: "<<endl;
preOrder(root);
return 0;
}
// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002)
Java
// Java implementation of above approach
import java.util.*;
// linked list node
class LNode {
int data;
LNode next;
LNode(int data) {
this.data = data;
this.next = null;
}
}
// binary tree node
class TNode {
int data;
TNode left;
TNode right;
TNode(int data) {
this.data = data;
this.left = null;
this.right = null;
}
}
public class Main {
// function to print nodes in a given linked list
static void printList(LNode node) {
while (node != null) {
System.out.print(node.data + " ");
node = node.next;
}
}
static void preOrder(TNode root) {
if (root == null) {
return;
}
System.out.print(root.data + " ");
preOrder(root.left);
preOrder(root.right);
}
static TNode sortedListToBSTRecur(List<Integer> vec, int start, int end) {
if (start > end) {
return null;
}
int mid = start + (end - start) / 2;
if ((end - start) % 2 != 0) {
mid = mid + 1;
}
TNode root = new TNode(vec.get(mid));
root.left = sortedListToBSTRecur(vec, start, mid - 1);
root.right = sortedListToBSTRecur(vec, mid + 1, end);
return root;
}
static TNode sortedListToBST(LNode head) {
List<Integer> vec = new ArrayList<Integer>();
LNode temp = head;
while (temp != null) {
vec.add(temp.data);
temp = temp.next;
}
return sortedListToBSTRecur(vec, 0, vec.size() - 1);
}
public static void main(String[] args) {
// Let us create a sorted linked list to test the functions
// Created linked list will be 1->2->3->4->5->6->7
LNode head = new LNode(1);
head.next = new LNode(2);
head.next.next = new LNode(3);
head.next.next.next = new LNode(4);
head.next.next.next.next = new LNode(5);
head.next.next.next.next.next = new LNode(6);
head.next.next.next.next.next.next = new LNode(7);
System.out.println("Given Linked List: ");
printList(head);
System.out.println();
// convert list to bst
TNode root = sortedListToBST(head);
System.out.println("Preorder Traversal of constructed BST: ");
preOrder(root);
}
}
// This code is contributed by Prajwal Kandekar
Python
# Python implementation of above approach
# link list node
class LNode:
def __init__(self, data):
self.data = data
self.next = None
# binary tree node
class TNode:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# function to print nodes in a given linked list
def printList(node):
while(node is not None):
print(node.data)
node = node.next
def preOrder(root):
if(root is None):
return
print(root.data)
preOrder(root.left)
preOrder(root.right)
def sortedListToBSTRecur(vec, start, end):
if(start > end):
return None
mid = start + (int)((end-start)/2)
if((end-start)%2 != 0):
mid = mid+1
root = TNode(vec[mid])
root.left = sortedListToBSTRecur(vec, start, mid-1)
root.right = sortedListToBSTRecur(vec, mid+1, end)
return root
def sortedListToBST(head):
vec = []
temp = head
while(temp is not None):
vec.append(temp.data)
temp = temp.next
return sortedListToBSTRecur(vec, 0, len(vec)-1)
# let us create a sorted linked list to test the functions
# created linked list will be 1->2->3->4->5->6->7
head = LNode(1)
head.next = LNode(2)
head.next.next = LNode(3)
head.next.next.next = LNode(4)
head.next.next.next.next = LNode(5)
head.next.next.next.next.next = LNode(6)
head.next.next.next.next.next.next = LNode(7)
print("Given Linked List : ")
printList(head)
print(" ")
# covert list to bst
root = sortedListToBST(head)
print("PreOrder Traversal of constructed BST : ")
preOrder(root)
C#
using System;
using System.Collections.Generic;
// linked list node
class LNode {
public int data;
public LNode next;
public LNode(int data) {
this.data = data;
this.next = null;
}
}
// binary tree node
class TNode {
public int data;
public TNode left;
public TNode right;
public TNode(int data) {
this.data = data;
this.left = null;
this.right = null;
}
}
public class MainClass {
// function to print nodes in a given linked list
static void printList(LNode node) {
while (node != null) {
Console.Write(node.data + " ");
node = node.next;
}
}
static void preOrder(TNode root) {
if (root == null) {
return;
}
Console.Write(root.data + " ");
preOrder(root.left);
preOrder(root.right);
}
static TNode sortedListToBSTRecur(List<int> vec, int start, int end) {
if (start > end) {
return null;
}
int mid = start + (end - start) / 2;
if ((end - start) % 2 != 0) {
mid = mid + 1;
}
TNode root = new TNode(vec[mid]);
root.left = sortedListToBSTRecur(vec, start, mid - 1);
root.right = sortedListToBSTRecur(vec, mid + 1, end);
return root;
}
static TNode sortedListToBST(LNode head) {
List<int> vec = new List<int>();
LNode temp = head;
while (temp != null) {
vec.Add(temp.data);
temp = temp.next;
}
return sortedListToBSTRecur(vec, 0, vec.Count - 1);
}
public static void Main(string[] args) {
// Let us create a sorted linked list to test the functions
// Created linked list will be 1->2->3->4->5->6->7
LNode head = new LNode(1);
head.next = new LNode(2);
head.next.next = new LNode(3);
head.next.next.next = new LNode(4);
head.next.next.next.next = new LNode(5);
head.next.next.next.next.next = new LNode(6);
head.next.next.next.next.next.next = new LNode(7);
Console.WriteLine("Given Linked List: ");
printList(head);
Console.WriteLine();
// convert list to bst
TNode root = sortedListToBST(head);
Console.WriteLine("Preorder Traversal of constructed BST: ");
preOrder(root);
}
}
JavaScript
// JavaScript implementation of above approach
// link list node
class LNode{
constructor(data){
this.data = data;
this.next = null;
}
}
// binary tree node
class TNode{
constructor(data){
this.data = data;
this.left = null;
this.right = null;
}
}
// function to print nodes in a given linked list
function printList(node){
while(node != null){
console.log(node.data + " ");
node = node.next;
}
}
function preOrder(root){
if(root == null) return;
console.log(root.data + " ");
preOrder(root.left);
preOrder(root.right);
}
function sortedListToBSTRecur(vec, start, end){
if(start > end) return null;
let mid = start + (end-start)/2;
if((end-start)%2 != 0) mid = mid+1;
let root = new TNode(vec[mid]);
root.left = sortedListToBSTRecur(vec, start, mid-1);
root.right = sortedListToBSTRecur(vec, mid+1, end);
return root;
}
function sortedListToBST(head){
let vec = [];
let temp = head;
while(temp != null){
vec.push(temp.data);
temp = temp.next;
}
return sortedListToBSTRecur(vec, 0, vec.length - 1);
}
// Let us create a sorted linked list to test the functions
// Created linked list will be 1->2->3->4->5->6->7
let head = new LNode(1);
head.next = new LNode(2);
head.next.next = new LNode(3);
head.next.next.next = new LNode(4);
head.next.next.next.next = new LNode(5);
head.next.next.next.next.next = new LNode(6);
head.next.next.next.next.next.next = new LNode(7);
console.log("Given Linked List: ");
printList(head);
console.log(" ");
// convert list to bst
let root = sortedListToBST(head);
console.log("PreOrder Traversal of constructed BST: ");
preOrder(root);
OutputGiven Linked List:
1 2 3 4 5 6 7
Peorder Traversal of constructed BST:
4 2 1 3 6 5 7
Time Complexity: O(N) where N is the number of elements in given linked list.
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem