Open In App

Split array into K subarrays with minimum sum of absolute difference between adjacent elements

Last Updated : 06 Apr, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array, arr[] of size N and an integer K, the task is to split the array into K subarrays minimizing the sum of absolute difference between adjacent elements of each subarray.

Examples:

Input: arr[] = {1, 3, -2, 5, -1}, K = 2
Output: 13
Explanation: Split the array into following 2 subarrays: {1, 3, -2} and {5, -1}.

Input: arr[] = {2, 14, 26, 10, 5, 12}, K = 3
Output: 24
Explanation: Splitting array into following 3 subarrays: {2, 14}, {26}, {10, 5, 12}.

Approach: The given problem can be solved based on the following observations:

The idea is to slice the array arr[] at ith index which gives maximum absolute difference of adjacent elements. Subtract it from the result. Slicing at K - 1 places will give K subarrays with minimum sum of absolute difference of adjacent elements.

Follow the steps below to solve the problem:

  1. Initialize an array, say new_Arr[], and an integer variable, say ans, to store total absolute difference sum.
  2. Traverse the array .
    • Store absolute difference of adjacent elements, say arr[i+1] and arr[i] in new_Arr[] array.
    • Increment ans by absolute difference of arr[i] and arr[i + 1]
  3. Sort the new_Arr[] array in descending order.
  4. Traverse the array from i = 0 to i = K-1
    • Decrement ans by new_Arr[i].
  5. Finally, print ans.

Below is the implementation of the above approach:

C++
// C++ program for the above approach

#include <bits/stdc++.h>
using namespace std;

// Function to split an array into K subarrays
// with minimum sum of absolute difference
// of adjacent elements in each of K subarrays
void absoluteDifference(int arr[], int N, int K)
{

    // Stores the absolute differences
    // of adjacent elements
    int new_Arr[N - 1];

    // Stores the answer
    int ans = 0;

    // Stores absolute differences of
    // adjacent elements in new_Arr
    for (int i = 0; i < N - 1; i++) {
        new_Arr[i] = abs(arr[i] - arr[i + 1]);

        // Stores the sum of all absolute
        // differences of adjacent elements
        ans += new_Arr[i];
    }

    // Sorting the new_Arr
    // in decreasing order
    sort(new_Arr, new_Arr + N - 1,
         greater<int>());

    for (int i = 0; i < K - 1; i++) {

        // Removing K - 1 elements
        // with maximum sum
        ans -= new_Arr[i];
    }

    // Prints the answer
    cout << ans << endl;
}

// Driver code
int main()
{
    // Given array arr[]
    int arr[] = { 1, 3, -2, 5, -1 };

    // Given K
    int K = 2;

    // Size of array
    int N = sizeof(arr) / sizeof(arr[0]);

    // Function Call
    absoluteDifference(arr, N, K);
    return 0;
}
Java
//  java program for the above approach
import java.util.*;
import java.util.Arrays;
class GFG
{
    
 public static void reverse(int[] array) 
 { 

   // Length of the array 
   int n = array.length; 

   // Swapping the first half elements with last half 
   // elements 
   for (int i = 0; i < n / 2; i++)
   { 

     // Storing the first half elements temporarily 
     int temp = array[i]; 

     // Assigning the first half to the last half 
     array[i] = array[n - i - 1]; 

     // Assigning the last half to the first half 
     array[n - i - 1] = temp; 
   } 
 } 

  // Function to split an array into K subarrays
  // with minimum sum of absolute difference
  // of adjacent elements in each of K subarrays
  public static void absoluteDifference(int arr[],
                                        int N, int K)
  {

    // Stores the absolute differences
    // of adjacent elements
    int new_Arr[] = new int[N - 1];

    // Stores the answer
    int ans = 0;

    // Stores absolute differences of
    // adjacent elements in new_Arr
    for (int i = 0; i < N - 1; i++)
    {
      new_Arr[i] = Math.abs(arr[i] - arr[i + 1]);

      // Stores the sum of all absolute
      // differences of adjacent elements
      ans += new_Arr[i];
    }

    // Sorting the new_Arr
    // in decreasing order
    Arrays.sort(new_Arr); 
    reverse(new_Arr);

    for (int i = 0; i < K - 1; i++)
    {

      // Removing K - 1 elements
      // with maximum sum
      ans -= new_Arr[i];
    }

    // Prints the answer
    System.out.println(ans);
  }

  // Driver code
  public static void main (String[] args)
  {

    // Given array arr[]
    int arr[] = { 1, 3, -2, 5, -1 };

    // Given K
    int K = 2;

    // Size of array
    int N = arr.length;

    // Function Call
    absoluteDifference(arr, N, K);
   }
}

// This code is contributed by AnkThon
Python3
# Python3 program for the above approach

# Function to split an array into K subarrays
# with minimum sum of absolute difference
# of adjacent elements in each of K subarrays
def absoluteDifference(arr, N, K):
    
    # Stores the absolute differences
    # of adjacent elements
    new_Arr = [0 for i in range(N - 1)]

    # Stores the answer
    ans = 0

    # Stores absolute differences of
    # adjacent elements in new_Arr
    for i in range(N - 1):
        new_Arr[i] = abs(arr[i] - arr[i + 1])

        # Stores the sum of all absolute
        # differences of adjacent elements
        ans += new_Arr[i]

    # Sorting the new_Arr
    # in decreasing order
    new_Arr = sorted(new_Arr)[::-1]

    for i in range(K - 1):

        # Removing K - 1 elements
        # with maximum sum
        ans -= new_Arr[i]

    # Prints the answer
    print (ans)

# Driver code
if __name__ == '__main__':

    # Given array arr[]
    arr = [ 1, 3, -2, 5, -1 ]

    # Given K
    K = 2

    # Size of array
    N = len(arr)

    # Function Call
    absoluteDifference(arr, N, K)

# This code is contributed by mohit kumar 29
C#
// C# program for the above approach
using System;

class GFG{
 
public static void reverse(int[] array) 
{ 
    
    // Length of the array 
    int n = array.Length; 
    
    // Swapping the first half elements with 
    // last half elements 
    for(int i = 0; i < n / 2; i++)
    { 
    
        // Storing the first half elements 
        // temporarily 
        int temp = array[i]; 
        
        // Assigning the first half to 
        // the last half 
        array[i] = array[n - i - 1]; 
        
        // Assigning the last half to 
        // the first half 
        array[n - i - 1] = temp; 
    } 
} 
    
// Function to split an array into K subarrays
// with minimum sum of absolute difference
// of adjacent elements in each of K subarrays
public static void absoluteDifference(int[] arr,
                                      int N, int K)
{
    
    // Stores the absolute differences
    // of adjacent elements
    int[] new_Arr = new int[N - 1];
    
    // Stores the answer
    int ans = 0;
    
    // Stores absolute differences of
    // adjacent elements in new_Arr
    for(int i = 0; i < N - 1; i++)
    {
        new_Arr[i] = Math.Abs(arr[i] - 
                              arr[i + 1]);
        
        // Stores the sum of all absolute
        // differences of adjacent elements
        ans += new_Arr[i];
    }
    
    // Sorting the new_Arr
    // in decreasing order
    Array.Sort(new_Arr); 
    reverse(new_Arr);
    
    for(int i = 0; i < K - 1; i++)
    {
        
        // Removing K - 1 elements
        // with maximum sum
        ans -= new_Arr[i];
    }
    
    // Prints the answer
    Console.WriteLine(ans);
}

// Driver Code
public static void Main ()
{
    
    // Given array arr[]
    int[] arr = { 1, 3, -2, 5, -1 };
    
    // Given K
    int K = 2;
    
    // Size of array
    int N = arr.Length;
    
    // Function Call
    absoluteDifference(arr, N, K);
}
}

// This code is contributed by susmitakundugoaldanga
JavaScript
<script>

// Javascript program for the above approach
function reverse(array) 
{ 

    // Length of the array 
    let n = array.length; 
    
    // Swapping the first half elements
    // with last half elements 
    for(let i = 0; i < n / 2; i++)
    { 
    
        // Storing the first half 
        // elements temporarily 
        let temp = array[i]; 
        
        // Assigning the first half
        // to the last half 
        array[i] = array[n - i - 1]; 
        
        // Assigning the last half 
        // to the first half 
        array[n - i - 1] = temp; 
    } 
} 

// Function to split an array into K subarrays
// with minimum sum of absolute difference
// of adjacent elements in each of K subarrays
function absoluteDifference(arr, N, K)
{

    // Stores the absolute differences
    // of adjacent elements
    let new_Arr = new Array(N - 1).fill(0);
    
    // Stores the answer
    let ans = 0;
    
    // Stores absolute differences of
    // adjacent elements in new_Arr
    for(let i = 0; i < N - 1; i++)
    {
        new_Arr[i] = Math.abs(arr[i] - arr[i + 1]);
        
        // Stores the sum of all absolute
        // differences of adjacent elements
        ans += new_Arr[i];
    }
    
    // Sorting the new_Arr
    // in decreasing order
    new_Arr.sort(); 
    reverse(new_Arr);
    
    for(let i = 0; i < K - 1; i++)
    {
    
        // Removing K - 1 elements
        // with maximum sum
        ans -= new_Arr[i];
    }
    
    // Print the answer
    document.write(ans);
}

// Driver Code

// Given array arr[]
let arr = [ 1, 3, -2, 5, -1 ];

// Given K
let K = 2;

// Size of array
let N = arr.length;

// Function Call
absoluteDifference(arr, N, K);

// This code is contributed by splevel62

</script>

Output: 
13

 

Time Complexity: O(N * Log(N))
Auxiliary Space: O(N)


Next Article

Similar Reads