Open In App

Stock Buy and Sell - Multiple Transaction Allowed

Last Updated : 23 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array prices[] of size n denoting the cost of stock on each day, the task is to find the maximum total profit if we can buy and sell the stocks any number of times.

Note: We can only sell a stock which we have bought earlier and we cannot hold multiple stocks on any day.

Examples:

Input: prices[] = {100, 180, 260, 310, 40, 535, 695}
Output: 865
Explanation: Buy the stock on day 0 and sell it on day 3 => 310 - 100 = 210
                       Buy the stock on day 4 and sell it on day 6 => 695 - 40 = 655
                       Maximum Profit  = 210 + 655 = 865

Maximize-Profit--Graph

Input: prices[] = {4, 2, 2, 2, 4}
Output: 2
Explanation: Buy the stock on day 3 and sell it on day 4 => 4 - 2 = 2
                       Maximum Profit  = 2

[Naive Approach] Using Recursion - Exponential Time

We consider every valid pair (A pair of indexes i and j such that price[i] < price[j] and j > i), we get the profit of the pair as (price[j] - price[i]) and add recursively compute profits for i-1 and j+1. Finally we return the maximum of all profits obtained by all valid pairs.

C++
#include <iostream>
#include <vector>
using namespace std;

int maxProfitRec(vector<int> &price, int start, int end) {
    int res = 0;
  
    // Consider every valid pair, find the profit with it
    // and recursively find profits on left and right of it
    for (int i = start; i < end; i++) {
        for (int j = i + 1; j <= end; j++) {
            if (price[j] > price[i]) {
                int curr = (price[j] - price[i]) + 
                            maxProfitRec(price, start, i - 1) + 
                  			maxProfitRec(price, j + 1, end);
                res = max(res, curr);
            }
        }
    }
    return res;
}

// Wrapper function
int maximumProfit(vector<int> &prices) {
    return maxProfitRec(prices, 0, prices.size()-1);
}

int main() {
    vector<int> prices = {100, 180, 260, 310, 40, 535, 695};
    cout << maximumProfit(prices);
    return 0;
}
C
#include <stdio.h>

// Function to find the maximum profit
int maxProfitRec(int price[], int start, int end) {
    int res = 0;

    // Consider every valid pair, find the profit with it
    // and recursively find profits on left and right of it
    for (int i = start; i < end; i++) {
        for (int j = i + 1; j <= end; j++) {
            if (price[j] > price[i]) {
                int curr = (price[j] - price[i]) + 
                            maxProfitRec(price, start, i - 1) + 
                            maxProfitRec(price, j + 1, end);
                if (curr > res) {
                    res = curr;
                }
            }
        }
    }
    return res;
}

// Wrapper function
int maximumProfit(int prices[], int size) {
    return maxProfitRec(prices, 0, size - 1);
}

int main() {
    int prices[] = {100, 180, 260, 310, 40, 535, 695};
    int size = sizeof(prices) / sizeof(prices[0]);
    printf("%d\n", maximumProfit(prices, size));
    return 0;
}
Java
import java.util.Arrays;

class GfG {
  
    // Function to find the maximum profit
    static int maxProfitRec(int[] price, int start, int end) {
        int res = 0;

        // Consider every valid pair, find the profit with it
        // and recursively find profits on left and right of it
        for (int i = start; i < end; i++) {
            for (int j = i + 1; j <= end; j++) {
                if (price[j] > price[i]) {
                    int curr = (price[j] - price[i]) + 
                                maxProfitRec(price, start, i - 1) + 
                                maxProfitRec(price, j + 1, end);
                    res = Math.max(res, curr);
                }
            }
        }
        return res;
    }

    // Wrapper function
    static int maximumProfit(int[] prices) {
        return maxProfitRec(prices, 0, prices.length - 1);
    }

    public static void main(String[] args) {
        int[] prices = {100, 180, 260, 310, 40, 535, 695};
        System.out.println(maximumProfit(prices));
    }
}
Python
# Function to find the maximum profit
def maxProfitRec(price, start, end):
    res = 0

    # Consider every valid pair, find the profit with it
    # and recursively find profits on left and right of it
    for i in range(start, end):
        for j in range(i + 1, end + 1):
            if price[j] > price[i]:
                curr = (price[j] - price[i]) + \
                       maxProfitRec(price, start, i - 1) + \
                       maxProfitRec(price, j + 1, end)
                res = max(res, curr)
    return res

# Wrapper function
def maximumProfit(prices):
    return maxProfitRec(prices, 0, len(prices) - 1)

if __name__ == "__main__":
    prices = [100, 180, 260, 310, 40, 535, 695]
    print(maximumProfit(prices))
C#
using System;

class GfG {
  
    // Function to find the maximum profit
    static int maxProfitRec(int[] price, int start, int end) {
        int res = 0;

        // Consider every valid pair, find the profit with it
        // and recursively find profits on left and right of it
        for (int i = start; i < end; i++) {
            for (int j = i + 1; j <= end; j++) {
                if (price[j] > price[i]) {
                    int curr = (price[j] - price[i]) +
                                maxProfitRec(price, start, i - 1) +
                                maxProfitRec(price, j + 1, end);
                    if (curr > res) {
                        res = curr;
                    }
                }
            }
        }
        return res;
    }

    // Wrapper function
    static int maximumProfit(int[] prices) {
        return maxProfitRec(prices, 0, prices.Length - 1);
    }

    static void Main() {
        int[] prices = {100, 180, 260, 310, 40, 535, 695};
        Console.WriteLine(maximumProfit(prices));
    }
}
JavaScript
// Function to find the maximum profit
function maxProfitRec(price, start, end) {
    let res = 0;

    // Consider every valid pair, find the profit with it
    // and recursively find profits on left and right of it
    for (let i = start; i < end; i++) {
        for (let j = i + 1; j <= end; j++) {
            if (price[j] > price[i]) {
                let curr = (price[j] - price[i]) +
                            maxProfitRec(price, start, i - 1) +
                            maxProfitRec(price, j + 1, end);
                res = Math.max(res, curr);
            }
        }
    }
    return res;
}

// Wrapper function
function maximumProfit(prices) {
    return maxProfitRec(prices, 0, prices.length - 1);
}

const prices = [100, 180, 260, 310, 40, 535, 695];
console.log(maximumProfit(prices));

Output
865

[Better Approach] Local Minima and Maxima - O(n) Time and O(1) Space

When the prices are going down, we do not do anything and let the prices go down. When the prices reach a local minimum value (a value after which the prices go up), we buy the stock. When the prices are going up, we let the prices go up and once the prices reach a local maxima, we sell the stock.

The idea is to traverse the array from left to right and do following.

  1. Find local minima and then a local maxima.
  2. Compute the difference between two and add to the result.

Working:


Below is the implementation of the algorithm

C++
#include <iostream>
#include <vector>
using namespace std;

int maximumProfit(vector<int>& prices) {
    int n = prices.size();
    int lMin = prices[0];  // Local Minima
    int lMax = prices[0];  // Local Maxima
    int res = 0;
  
    int i = 0;
    while (i < n - 1) {
      
        // Find local minima 
        while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
        lMin = prices[i];
       
        // Local Maxima
        while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
        lMax = prices[i];
      
        // Add current profit 
        res = res + (lMax - lMin);
    }
  
    return res;
}

int main() {
    vector<int> prices = {100, 180, 260, 310, 40, 535, 695};
    cout << maximumProfit(prices);
    return 0;
}
C
#include <stdio.h>

// Function to calculate the maximum profit
int maximumProfit(int prices[], int n) {
    int lMin = prices[0];  // Local Minima
    int lMax = prices[0];  // Local Maxima
    int res = 0;
  
    int i = 0;
    while (i < n - 1) {
      
        // Find local minima
        while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
        lMin = prices[i];
       
        // Local Maxima
        while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
        lMax = prices[i];
      
        // Add current profit
        res += (lMax - lMin);
    }
  
    return res;
}

// Driver Code
int main() {
    int prices[] = {100, 180, 260, 310, 40, 535, 695};
    int n = sizeof(prices) / sizeof(prices[0]);
    printf("%d\n", maximumProfit(prices, n));
    return 0;
}
Java
class GfG {
  
    // Function to calculate the maximum profit
    static int maximumProfit(int[] prices) {
        int n = prices.length;
        int lMin = prices[0];  // Local Minima
        int lMax = prices[0];  // Local Maxima
        int res = 0;

        int i = 0;
        while (i < n - 1) {
          
            // Find local minima
            while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
            lMin = prices[i];
           
            // Local Maxima
            while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
            lMax = prices[i];
          
            // Add current profit
            res += (lMax - lMin);
        }
      
        return res;
    }

    public static void main(String[] args) {
        int[] prices = {100, 180, 260, 310, 40, 535, 695};
        System.out.println(maximumProfit(prices));
    }
}
Python
# Function to calculate the maximum profit
def maximumProfit(prices):
    n = len(prices)
    lMin = prices[0]  # Local Minima
    lMax = prices[0]  # Local Maxima
    res = 0
  
    i = 0
    while i < n - 1:
      
        # Find local minima
        while i < n - 1 and prices[i] >= prices[i + 1]:
            i += 1
        lMin = prices[i]
        
        # Local Maxima
        while i < n - 1 and prices[i] <= prices[i + 1]:
            i += 1
        lMax = prices[i]
      
        # Add current profit
        res += (lMax - lMin)
  
    return res

# Driver Code
if __name__ == "__main__":
    prices = [100, 180, 260, 310, 40, 535, 695]
    print(maximumProfit(prices))
C#
using System;

class GfG {
  
    // Function to calculate the maximum profit
    static int maximumProfit(int[] prices) {
        int n = prices.Length;
        int lMin = prices[0];  // Local Minima
        int lMax = prices[0];  // Local Maxima
        int res = 0;

        int i = 0;
        while (i < n - 1) {
          
            // Find local minima
            while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
            lMin = prices[i];
           
            // Local Maxima
            while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
            lMax = prices[i];
          
            // Add current profit
            res += (lMax - lMin);
        }
      
        return res;
    }

    // Driver Code
    static void Main() {
        int[] prices = {100, 180, 260, 310, 40, 535, 695};
        Console.WriteLine(maximumProfit(prices));
    }
}
JavaScript
// Function to calculate the maximum profit
function maximumProfit(prices) {
    let n = prices.length;
    let lMin = prices[0];  // Local Minima
    let lMax = prices[0];  // Local Maxima
    let res = 0;
  
    let i = 0;
    while (i < n - 1) {
      
        // Find local minima
        while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
        lMin = prices[i];
       
        // Local Maxima
        while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
        lMax = prices[i];
      
        // Add current profit
        res += (lMax - lMin);
    }
  
    return res;
}

const prices = [100, 180, 260, 310, 40, 535, 695];
console.log(maximumProfit(prices));

Output
865

Time Complexity: O(n)
Auxiliary Space: O(1)

[Expected Approach] Accumulate Profit - O(n) Time and O(1) Space

This is mainly an optimization over the previous solution. Instead of selling at local maxima, we keep selling while the prices are going up. This way we accumulate the same profit and avoid some condition checks required for computing local minima and maxima.

Traverse price[] from i = 1 to price.size() - 1

  • res = 0
  • if price[i] > price[i - 1]
    • res = res + price[i] - price[i - 1]


Below is the implementation of the algorithm:

C++
// C++ Program to find the max profit when multiple
// transactions are allowed

#include <iostream>
#include <vector>
using namespace std;

int maximumProfit(const vector<int>& prices) {
    int res = 0;
  
    // Keep on adding the difference between
    // adjacent when the prices a
    for (int i = 1; i < prices.size(); i++) {
        if (prices[i] > prices[i - 1]) 
            res += prices[i] - prices[i - 1];
    }
    
    return res;
}

int main() {
    vector<int> prices = { 100, 180, 260, 310, 40, 535, 695 };
    cout << maximumProfit(prices) << endl;
    return 0;
}
C
// C Program to find the max profit when multiple
// transactions are allowed

#include <stdio.h>

int maximumProfit(const int* prices, int n) {
    int res = 0;

    // Keep on adding the difference between
    // adjacent when the prices a
    for (int i = 1; i < n; i++) {
        if (prices[i] > prices[i - 1]) 
            res += prices[i] - prices[i - 1];
    }
    
    return res;
}

int main() {
    int prices[] = { 100, 180, 260, 310, 40, 535, 695 };
    int size = sizeof(prices) / sizeof(prices[0]);
    printf("%d\n", maximumProfit(prices, size));
    return 0;
}
Java
// Java Program to find the max profit when multiple
// transactions are allowed

import java.util.Arrays;

class GfG {
    
    static int maximumProfit(int[] prices) {
        int res = 0;

        // Keep on adding the difference between
        // adjacent when the prices a
        for (int i = 1; i < prices.length; i++) {
            if (prices[i] > prices[i - 1]) 
                res += prices[i] - prices[i - 1];
        }
        
        return res;
    }

    public static void main(String[] args) {
        int[] prices = { 100, 180, 260, 310, 40, 535, 695 };
        System.out.println(maximumProfit(prices));
    }
}
Python
# Python Program to find the max profit when multiple
# transactions are allowed

def maximumProfit(prices):
    res = 0

    # Keep on adding the difference between
    # adjacent when the prices a
    for i in range(1, len(prices)):
        if prices[i] > prices[i - 1]:
            res += prices[i] - prices[i - 1]

    return res

if __name__ == "__main__":
    prices = [100, 180, 260, 310, 40, 535, 695]
    print(maximumProfit(prices))
C#
// C# Program to find the max profit when multiple
// transactions are allowed

using System;
using System.Collections.Generic;

class GfG {
    static int maximumProfit(List<int> prices) {
        int res = 0;

        // Keep on adding the difference between
        // adjacent when the prices a
        for (int i = 1; i < prices.Count; i++) {
            if (prices[i] > prices[i - 1]) 
                res += prices[i] - prices[i - 1];
        }

        return res;
    }

    static void Main(string[] args) {
        List<int> prices = 
             new List<int> { 100, 180, 260, 310, 40, 535, 695 };
        Console.WriteLine(maximumProfit(prices));
    }
}
JavaScript
// JavaScript Program to find the max profit when multiple
// transactions are allowed

function maximumProfit(prices) {
    let res = 0;

    // Keep on adding the difference between
    // adjacent when the prices a
    for (let i = 1; i < prices.length; i++) {
        if (prices[i] > prices[i - 1]) 
            res += prices[i] - prices[i - 1];
    }

    return res;
}

const prices = [100, 180, 260, 310, 40, 535, 695];
console.log(maximumProfit(prices));

Output
865

Time Complexity: O(n)
Auxiliary Space: O(1)

Related Problems


Stock Buy and Sell (With No Limit)
Visit Course explore course icon

Similar Reads