Stock Buy and Sell - Multiple Transaction Allowed
Last Updated :
23 Jul, 2025
Given an array prices[] of size n denoting the cost of stock on each day, the task is to find the maximum total profit if we can buy and sell the stocks any number of times.
Note: We can only sell a stock which we have bought earlier and we cannot hold multiple stocks on any day.
Examples:
Input: prices[] = {100, 180, 260, 310, 40, 535, 695}
Output: 865
Explanation: Buy the stock on day 0 and sell it on day 3 => 310 - 100 = 210
Buy the stock on day 4 and sell it on day 6 => 695 - 40 = 655
Maximum Profit = 210 + 655 = 865
Input: prices[] = {4, 2, 2, 2, 4}
Output: 2
Explanation: Buy the stock on day 3 and sell it on day 4 => 4 - 2 = 2
Maximum Profit = 2
[Naive Approach] Using Recursion - Exponential Time
We consider every valid pair (A pair of indexes i and j such that price[i] < price[j] and j > i), we get the profit of the pair as (price[j] - price[i]) and add recursively compute profits for i-1 and j+1. Finally we return the maximum of all profits obtained by all valid pairs.
C++
#include <iostream>
#include <vector>
using namespace std;
int maxProfitRec(vector<int> &price, int start, int end) {
int res = 0;
// Consider every valid pair, find the profit with it
// and recursively find profits on left and right of it
for (int i = start; i < end; i++) {
for (int j = i + 1; j <= end; j++) {
if (price[j] > price[i]) {
int curr = (price[j] - price[i]) +
maxProfitRec(price, start, i - 1) +
maxProfitRec(price, j + 1, end);
res = max(res, curr);
}
}
}
return res;
}
// Wrapper function
int maximumProfit(vector<int> &prices) {
return maxProfitRec(prices, 0, prices.size()-1);
}
int main() {
vector<int> prices = {100, 180, 260, 310, 40, 535, 695};
cout << maximumProfit(prices);
return 0;
}
C
#include <stdio.h>
// Function to find the maximum profit
int maxProfitRec(int price[], int start, int end) {
int res = 0;
// Consider every valid pair, find the profit with it
// and recursively find profits on left and right of it
for (int i = start; i < end; i++) {
for (int j = i + 1; j <= end; j++) {
if (price[j] > price[i]) {
int curr = (price[j] - price[i]) +
maxProfitRec(price, start, i - 1) +
maxProfitRec(price, j + 1, end);
if (curr > res) {
res = curr;
}
}
}
}
return res;
}
// Wrapper function
int maximumProfit(int prices[], int size) {
return maxProfitRec(prices, 0, size - 1);
}
int main() {
int prices[] = {100, 180, 260, 310, 40, 535, 695};
int size = sizeof(prices) / sizeof(prices[0]);
printf("%d\n", maximumProfit(prices, size));
return 0;
}
Java
import java.util.Arrays;
class GfG {
// Function to find the maximum profit
static int maxProfitRec(int[] price, int start, int end) {
int res = 0;
// Consider every valid pair, find the profit with it
// and recursively find profits on left and right of it
for (int i = start; i < end; i++) {
for (int j = i + 1; j <= end; j++) {
if (price[j] > price[i]) {
int curr = (price[j] - price[i]) +
maxProfitRec(price, start, i - 1) +
maxProfitRec(price, j + 1, end);
res = Math.max(res, curr);
}
}
}
return res;
}
// Wrapper function
static int maximumProfit(int[] prices) {
return maxProfitRec(prices, 0, prices.length - 1);
}
public static void main(String[] args) {
int[] prices = {100, 180, 260, 310, 40, 535, 695};
System.out.println(maximumProfit(prices));
}
}
Python
# Function to find the maximum profit
def maxProfitRec(price, start, end):
res = 0
# Consider every valid pair, find the profit with it
# and recursively find profits on left and right of it
for i in range(start, end):
for j in range(i + 1, end + 1):
if price[j] > price[i]:
curr = (price[j] - price[i]) + \
maxProfitRec(price, start, i - 1) + \
maxProfitRec(price, j + 1, end)
res = max(res, curr)
return res
# Wrapper function
def maximumProfit(prices):
return maxProfitRec(prices, 0, len(prices) - 1)
if __name__ == "__main__":
prices = [100, 180, 260, 310, 40, 535, 695]
print(maximumProfit(prices))
C#
using System;
class GfG {
// Function to find the maximum profit
static int maxProfitRec(int[] price, int start, int end) {
int res = 0;
// Consider every valid pair, find the profit with it
// and recursively find profits on left and right of it
for (int i = start; i < end; i++) {
for (int j = i + 1; j <= end; j++) {
if (price[j] > price[i]) {
int curr = (price[j] - price[i]) +
maxProfitRec(price, start, i - 1) +
maxProfitRec(price, j + 1, end);
if (curr > res) {
res = curr;
}
}
}
}
return res;
}
// Wrapper function
static int maximumProfit(int[] prices) {
return maxProfitRec(prices, 0, prices.Length - 1);
}
static void Main() {
int[] prices = {100, 180, 260, 310, 40, 535, 695};
Console.WriteLine(maximumProfit(prices));
}
}
JavaScript
// Function to find the maximum profit
function maxProfitRec(price, start, end) {
let res = 0;
// Consider every valid pair, find the profit with it
// and recursively find profits on left and right of it
for (let i = start; i < end; i++) {
for (let j = i + 1; j <= end; j++) {
if (price[j] > price[i]) {
let curr = (price[j] - price[i]) +
maxProfitRec(price, start, i - 1) +
maxProfitRec(price, j + 1, end);
res = Math.max(res, curr);
}
}
}
return res;
}
// Wrapper function
function maximumProfit(prices) {
return maxProfitRec(prices, 0, prices.length - 1);
}
const prices = [100, 180, 260, 310, 40, 535, 695];
console.log(maximumProfit(prices));
[Better Approach] Local Minima and Maxima - O(n) Time and O(1) Space
When the prices are going down, we do not do anything and let the prices go down. When the prices reach a local minimum value (a value after which the prices go up), we buy the stock. When the prices are going up, we let the prices go up and once the prices reach a local maxima, we sell the stock.
The idea is to traverse the array from left to right and do following.
- Find local minima and then a local maxima.
- Compute the difference between two and add to the result.
Working:
Below is the implementation of the algorithm
C++
#include <iostream>
#include <vector>
using namespace std;
int maximumProfit(vector<int>& prices) {
int n = prices.size();
int lMin = prices[0]; // Local Minima
int lMax = prices[0]; // Local Maxima
int res = 0;
int i = 0;
while (i < n - 1) {
// Find local minima
while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
lMin = prices[i];
// Local Maxima
while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
lMax = prices[i];
// Add current profit
res = res + (lMax - lMin);
}
return res;
}
int main() {
vector<int> prices = {100, 180, 260, 310, 40, 535, 695};
cout << maximumProfit(prices);
return 0;
}
C
#include <stdio.h>
// Function to calculate the maximum profit
int maximumProfit(int prices[], int n) {
int lMin = prices[0]; // Local Minima
int lMax = prices[0]; // Local Maxima
int res = 0;
int i = 0;
while (i < n - 1) {
// Find local minima
while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
lMin = prices[i];
// Local Maxima
while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
lMax = prices[i];
// Add current profit
res += (lMax - lMin);
}
return res;
}
// Driver Code
int main() {
int prices[] = {100, 180, 260, 310, 40, 535, 695};
int n = sizeof(prices) / sizeof(prices[0]);
printf("%d\n", maximumProfit(prices, n));
return 0;
}
Java
class GfG {
// Function to calculate the maximum profit
static int maximumProfit(int[] prices) {
int n = prices.length;
int lMin = prices[0]; // Local Minima
int lMax = prices[0]; // Local Maxima
int res = 0;
int i = 0;
while (i < n - 1) {
// Find local minima
while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
lMin = prices[i];
// Local Maxima
while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
lMax = prices[i];
// Add current profit
res += (lMax - lMin);
}
return res;
}
public static void main(String[] args) {
int[] prices = {100, 180, 260, 310, 40, 535, 695};
System.out.println(maximumProfit(prices));
}
}
Python
# Function to calculate the maximum profit
def maximumProfit(prices):
n = len(prices)
lMin = prices[0] # Local Minima
lMax = prices[0] # Local Maxima
res = 0
i = 0
while i < n - 1:
# Find local minima
while i < n - 1 and prices[i] >= prices[i + 1]:
i += 1
lMin = prices[i]
# Local Maxima
while i < n - 1 and prices[i] <= prices[i + 1]:
i += 1
lMax = prices[i]
# Add current profit
res += (lMax - lMin)
return res
# Driver Code
if __name__ == "__main__":
prices = [100, 180, 260, 310, 40, 535, 695]
print(maximumProfit(prices))
C#
using System;
class GfG {
// Function to calculate the maximum profit
static int maximumProfit(int[] prices) {
int n = prices.Length;
int lMin = prices[0]; // Local Minima
int lMax = prices[0]; // Local Maxima
int res = 0;
int i = 0;
while (i < n - 1) {
// Find local minima
while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
lMin = prices[i];
// Local Maxima
while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
lMax = prices[i];
// Add current profit
res += (lMax - lMin);
}
return res;
}
// Driver Code
static void Main() {
int[] prices = {100, 180, 260, 310, 40, 535, 695};
Console.WriteLine(maximumProfit(prices));
}
}
JavaScript
// Function to calculate the maximum profit
function maximumProfit(prices) {
let n = prices.length;
let lMin = prices[0]; // Local Minima
let lMax = prices[0]; // Local Maxima
let res = 0;
let i = 0;
while (i < n - 1) {
// Find local minima
while (i < n - 1 && prices[i] >= prices[i + 1]) { i++; }
lMin = prices[i];
// Local Maxima
while (i < n - 1 && prices[i] <= prices[i + 1]) { i++; }
lMax = prices[i];
// Add current profit
res += (lMax - lMin);
}
return res;
}
const prices = [100, 180, 260, 310, 40, 535, 695];
console.log(maximumProfit(prices));
Time Complexity: O(n)
Auxiliary Space: O(1)
[Expected Approach] Accumulate Profit - O(n) Time and O(1) Space
This is mainly an optimization over the previous solution. Instead of selling at local maxima, we keep selling while the prices are going up. This way we accumulate the same profit and avoid some condition checks required for computing local minima and maxima.
Traverse price[] from i = 1 to price.size() - 1
- res = 0
- if price[i] > price[i - 1]
- res = res + price[i] - price[i - 1]
Below is the implementation of the algorithm:
C++
// C++ Program to find the max profit when multiple
// transactions are allowed
#include <iostream>
#include <vector>
using namespace std;
int maximumProfit(const vector<int>& prices) {
int res = 0;
// Keep on adding the difference between
// adjacent when the prices a
for (int i = 1; i < prices.size(); i++) {
if (prices[i] > prices[i - 1])
res += prices[i] - prices[i - 1];
}
return res;
}
int main() {
vector<int> prices = { 100, 180, 260, 310, 40, 535, 695 };
cout << maximumProfit(prices) << endl;
return 0;
}
C
// C Program to find the max profit when multiple
// transactions are allowed
#include <stdio.h>
int maximumProfit(const int* prices, int n) {
int res = 0;
// Keep on adding the difference between
// adjacent when the prices a
for (int i = 1; i < n; i++) {
if (prices[i] > prices[i - 1])
res += prices[i] - prices[i - 1];
}
return res;
}
int main() {
int prices[] = { 100, 180, 260, 310, 40, 535, 695 };
int size = sizeof(prices) / sizeof(prices[0]);
printf("%d\n", maximumProfit(prices, size));
return 0;
}
Java
// Java Program to find the max profit when multiple
// transactions are allowed
import java.util.Arrays;
class GfG {
static int maximumProfit(int[] prices) {
int res = 0;
// Keep on adding the difference between
// adjacent when the prices a
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1])
res += prices[i] - prices[i - 1];
}
return res;
}
public static void main(String[] args) {
int[] prices = { 100, 180, 260, 310, 40, 535, 695 };
System.out.println(maximumProfit(prices));
}
}
Python
# Python Program to find the max profit when multiple
# transactions are allowed
def maximumProfit(prices):
res = 0
# Keep on adding the difference between
# adjacent when the prices a
for i in range(1, len(prices)):
if prices[i] > prices[i - 1]:
res += prices[i] - prices[i - 1]
return res
if __name__ == "__main__":
prices = [100, 180, 260, 310, 40, 535, 695]
print(maximumProfit(prices))
C#
// C# Program to find the max profit when multiple
// transactions are allowed
using System;
using System.Collections.Generic;
class GfG {
static int maximumProfit(List<int> prices) {
int res = 0;
// Keep on adding the difference between
// adjacent when the prices a
for (int i = 1; i < prices.Count; i++) {
if (prices[i] > prices[i - 1])
res += prices[i] - prices[i - 1];
}
return res;
}
static void Main(string[] args) {
List<int> prices =
new List<int> { 100, 180, 260, 310, 40, 535, 695 };
Console.WriteLine(maximumProfit(prices));
}
}
JavaScript
// JavaScript Program to find the max profit when multiple
// transactions are allowed
function maximumProfit(prices) {
let res = 0;
// Keep on adding the difference between
// adjacent when the prices a
for (let i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1])
res += prices[i] - prices[i - 1];
}
return res;
}
const prices = [100, 180, 260, 310, 40, 535, 695];
console.log(maximumProfit(prices));
Time Complexity: O(n)
Auxiliary Space: O(1)
Related Problems
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem