Sum of Bitwise OR of all pairs in a given array
Last Updated :
11 Jul, 2025
Given an array "arr[0..n-1]" of integers. The task is to calculate the sum of Bitwise OR of all pairs, i.e. calculate the sum of "arr[i] | arr[j]" for all the pairs in the given array where i < j. Here '|' is a bitwise OR operator. The expected time complexity is O(n).
Examples:
Input: arr[] = {5, 10, 15}
Output: 15
Required Value = (5 | 10) + (5 | 15) + (10 | 15)
= 15 + 15 + 15
= 45
Input: arr[] = {1, 2, 3, 4}
Output: 3
Required Value = (1 | 2) + (1 | 3) + (1 | 4) +
(2 | 3) + (2 | 4) + (3 | 4)
= 3 + 3 + 5 + 3 + 6 + 7
= 27
Approach 1: Brute Force
Here we will be running two loops
C++
// A Simple C++ program to compute sum of bitwise OR
// of all pairs
#include <bits/stdc++.h>
using namespace std;
// Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
int pairORSum(int arr[], int n)
{
int ans = 0; // Initialize result
// Consider all pairs (arr[i], arr[j) such that
// i < j
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
ans += arr[i] | arr[j];
return ans;
}
// Driver program to test above function
int main()
{
int arr[] = { 1, 2, 3, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << pairORSum(arr, n) << endl;
return 0;
}
Java
// A Simple Java program to compute
// sum of bitwise OR of all pairs
import java.io.*;
class GFG {
// Returns value of "arr[0] | arr[1] +
// arr[0] | arr[2] + ... arr[i] | arr[j] +
// ..... arr[n-2] | arr[n-1]"
static int pairORSum(int arr[], int n)
{
int ans = 0; // Initialize result
// Consider all pairs (arr[i], arr[j)
// such that i < j
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
ans += arr[i] | arr[j];
return ans;
}
// Driver program to test above function
public static void main(String args[])
{
int arr[] = { 1, 2, 3, 4 };
int n = arr.length;
System.out.println(pairORSum(arr, n));
}
}
Python3
# A Simple Python 3 program to compute
# sum of bitwise OR of all pairs
# Returns value of "arr[0] | arr[1] +
# arr[0] | arr[2] + ... arr[i] | arr[j] +
# ..... arr[n-2] | arr[n-1]"
def pairORSum(arr, n) :
ans = 0 # Initialize result
# Consider all pairs (arr[i], arr[j)
# such that i < j
for i in range(0, n) :
for j in range((i + 1), n) :
ans = ans + arr[i] | arr[j]
return ans
# Driver program to test above function
arr = [1, 2, 3, 4]
n = len(arr)
print(pairORSum(arr, n))
C#
// A Simple C# program to compute
// sum of bitwise OR of all pairs
using System;
class GFG {
// Returns value of "arr[0] | arr[1] +
// arr[0] | arr[2] + ... arr[i] | arr[j] +
// ..... arr[n-2] | arr[n-1]"
static int pairORSum(int[] arr, int n)
{
int ans = 0; // Initialize result
// Consider all pairs (arr[i], arr[j)
// such that i < j
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
ans += arr[i] | arr[j];
return ans;
}
// Driver program to test above function
public static void Main()
{
int[] arr = { 1, 2, 3, 4 };
int n = arr.Length;
Console.Write(pairORSum(arr, n));
}
}
PHP
<?php
// A Simple PHP program to
// compute sum of bitwise
// OR of all pairs
// Returns value of "arr[0] |
// arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + .....
// arr[n-2] | arr[n-1]"
function pairORSum($arr, $n)
{
// Initialize result
$ans = 0;
// Consider all pairs (arr[i],
// arr[j) such that i < j
for ($i = 0; $i < $n; $i++)
for ( $j = $i + 1; $j < $n; $j++)
$ans += $arr[$i] | $arr[$j];
return $ans;
}
// Driver Code
$arr = array(1, 2, 3, 4);
$n = sizeof($arr) ;
echo pairORSum($arr, $n), "\n";
?>
JavaScript
<script>
// A Simple Javascript program to compute sum of bitwise OR
// of all pairs
// Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
function pairORSum(arr, n)
{
var ans = 0; // Initialize result
// Consider all pairs (arr[i], arr[j) such that
// i < j
for (var i = 0; i < n; i++)
for (var j = i + 1; j < n; j++)
ans += arr[i] | arr[j];
return ans;
}
// Driver program to test above function
var arr = [1, 2, 3, 4];
var n = arr.length;
document.write( pairORSum(arr, n));
</script>
Output:
27
Time Complexity: O(n2) // since two loops are used so the algorithm runs for n*n times
Auxiliary Space: O(1) // since no extra array is used so the solution takes constant space
Approach 2: Efficient Solution
It can solve this problem in O(n) time. The assumption here is that integers are represented using 32 bits.
The idea is to count number of set bits at every i'th position (i>=0 && i<=31). Any i'th bit of the AND of two numbers is 1 if the corresponding bit in both the numbers is equal to 1.
Let k1 be the count of set bits at i'th position. Total number of pairs with i'th set bit would be k1C2 = k1*(k1-1)/2 (Count k1 means there are k1 numbers that have i'th set bit). Every such pair adds 2i to total sum. Similarly, there are total k0 values that don't have set bits at i'th position. Now each element (which have not set the bit at the i'th position can make pair with k1 elements (ie., those elements which have set bits at the i'th position), So there are total k1 * k0 pairs and every such pair also adds 2i to total sum.
sum = sum + (1<<i) * (k1*(k1-1)/2) + (1<<i) * (k1*k0)
This idea is similar to finding sum of bit differences among all pairs.
Below is the implementation of the above approach:
C++
// An efficient C++ program to compute sum of bitwise OR
// of all pairs
#include <bits/stdc++.h>
using namespace std;
typedef long long int LLI;
// Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
LLI pairORSum(LLI arr[], LLI n)
{
LLI ans = 0; // Initialize result
// Traverse over all bits
for (LLI i = 0; i < 32; i++) {
// Count number of elements with the i'th bit set(ie., 1)
LLI k1 = 0; // Initialize the count
// Count number of elements with i’th bit not-set(ie., 0) `
LLI k0 = 0; // Initialize the count
for (LLI j = 0; j < n; j++) {
if ((arr[j] & (1 << i))) // if i'th bit is set
k1++;
else
k0++;
}
// There are k1 set bits, means k1(k1-1)/2 pairs. k1C2
// There are k0 not-set bits and k1 set bits so total pairs will be k1*k0.
// Every pair adds 2^i to the answer. Therefore,
ans = ans + (1 << i) * (k1 * (k1 - 1) / 2) + (1 << i) * (k1 * k0);
}
return ans;
}
// Driver program to test the above function
int main()
{
LLI arr[] = { 1, 2, 3, 4 };
LLI n = sizeof(arr) / sizeof(arr[0]);
cout << pairORSum(arr, n) << endl;
return 0;
}
Java
// An efficient Java program to compute
// sum of bitwise OR of all pairs
import java.io.*;
class GFG {
// Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
static int pairORSum(int arr[], int n)
{
int ans = 0; // Initialize result
// Traverse over all bits
for (int i = 0; i < 32; i++) {
// Count number of elements with the ith bit set(ie., 1)
int k1 = 0; // Initialize the count
// Count number of elements with ith bit not-set(ie., 0) `
int k0 = 0; // Initialize the count
for (int j = 0; j < n; j++) {
if ((arr[j] & (1 << i)) != 0) // if i'th bit is set
k1++;
else
k0++;
}
// There are k1 set bits, means k1(k1-1)/2 pairs. k1C2
// There are k0 not-set bits and k1 set bits so total pairs will be k1*k0.
// Every pair adds 2^i to the answer. Therefore,
ans = ans + (1 << i) * (k1 * (k1 - 1) / 2) + (1 << i) * (k1 * k0);
}
return ans;
}
// Driver program to test above function
public static void main(String args[])
{
int arr[] = { 1, 2, 3, 4 };
int n = arr.length;
System.out.println(pairORSum(arr, n));
}
}
Python3
# An efficient Python 3 program to
# compute the sum of bitwise OR of all pairs
# Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
# ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
def pairORSum(arr, n) :
# Initialize result
ans = 0
# Traverse over all bits
for i in range(0, 32) :
# Count number of elements with the i'th bit set(ie., 1)
k1 = 0
# Count number of elements with i’th bit not-set(ie., 0) `
k0 = 0
for j in range(0, n) :
if( (arr[j] & (1<<i)) ): # if i'th bit is set
k1 = k1 + 1
else :
k0 = k0 + 1
# There are k1 set bits, means k1(k1-1)/2 pairs. k1C2
# There are k0 not-set bits and k1 set bits so total pairs will be k1 * k0.
# Every pair adds 2 ^ i to the answer. Therefore,
ans = ans + (1<<i) * (k1*(k1-1)//2) + (1<<i) * (k1 * k0)
return ans
# Driver program to test above function
arr = [1, 2, 3, 4]
n = len(arr)
print(pairORSum(arr, n))
C#
// An efficient C# program to compute
// sum of bitwise OR of all pairs
using System;
class GFG {
// Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
static int pairORSum(int[] arr, int n)
{
int ans = 0; // Initialize result
// Traverse over all bits
for (int i = 0; i < 32; i++) {
// Count number of elements with the ith bit set(ie., 1)
int k1 = 0; // Initialize the count
// Count number of elements with ith bit not-set(ie., 0) `
int k0 = 0; // Initialize the count
for (int j = 0; j < n; j++) {
// if i'th bit is set
if ((arr[j] & (1 << i)) != 0)
k1++;
else
k0++;
}
// There are k1 set bits, means k1(k1-1)/2 pairs. k1C2
// There are k0 not-set bits and k1 set bits so total pairs will be k1*k0.
// Every pair adds 2^i to the answer. Therefore,
ans = ans + (1 << i) * (k1 * (k1 - 1) / 2) + (1 << i) * (k1 * k0);
}
return ans;
}
// Driver program to test above function
public static void Main()
{
int[] arr = new int[] { 1, 2, 3, 4 };
int n = arr.Length;
Console.Write(pairORSum(arr, n));
}
}
PHP
<?php
// An efficient PHP program to compute
// sum of bitwise OR of all pairs
// Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
function pairORSum($arr, $n)
{
$ans = 0; // Initialize result
// Traverse over all bits
for ( $i = 0; $i < 32; $i++){
// Count number of elements with the ith bit set(ie., 1)
$k1 = 0; // Initialize the count
// Count number of elements with ith bit not-set(ie., 0) `
$k0 = 0; // Initialize the count
for ( $j = 0; $j < $n; $j++){
if ( ($arr[$j] & (1 << $i))) // if i'th bit is set
$k1++;
else
$k0++;
}
// There are k1 set bits, means k1(k1-1)/2 pairs. k1C2
// There are k0 not-set bits and k1 set bits so total pairs will be k1*k0.
// Every pair adds 2^i to the answer. Therefore,
$ans = $ans + (1<<$i) * ($k1*($k1-1)/2) + (1<<$i) * ($k1*$k0) ;
}
return $ans;
}
// Driver Code
$arr = array(1, 2, 3, 4);
$n = sizeof($arr);
echo pairORSum($arr, $n) ;
?>
JavaScript
<script>
// An efficient Javascript program
// to compute sum of bitwise OR
// of all pairs
// Returns value of "arr[0] | arr[1] + arr[0] | arr[2] +
// ... arr[i] | arr[j] + ..... arr[n-2] | arr[n-1]"
function pairORSum( arr, n)
{
var ans = 0; // Initialize result
// Traverse over all bits
for (var i = 0; i < 32; i++) {
// Count number of elements
// with the i'th bit set(ie., 1)
var k1 = 0; // Initialize the count
// Count number of elements with
// i’th bit not-set(ie., 0) `
var k0 = 0; // Initialize the count
for (var j = 0; j < n; j++) {
if ((arr[j] & (1 << i))) // if i'th bit is set
k1++;
else
k0++;
}
// There are k1 set bits,
// means k1(k1-1)/2 pairs. k1C2
// There are k0 not-set bits and
// k1 set bits so total pairs will be k1*k0.
// Every pair adds 2^i to the answer. Therefore,
ans = ans + (1 << i) * (k1 * (k1 - 1) / 2) +
(1 << i) * (k1 * k0);
}
return ans;
}
// Driver program to test the above function
var arr = [1, 2, 3, 4];
var n = arr.length;
document.write( pairORSum(arr, n));
</script>
Output:
27
Time Complexity: O(n * 32) //since for every element in array another array operates 32 times thus the overall algorithm takes O(n*32) time.
Auxiliary Space: O(1) // since no extra array is used so the solution takes constant space.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem