Open In App

XOR in a range of a binary array

Last Updated : 12 Dec, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a binary array arr[] of size N and some queries. Each query represents an index range [l, r]. The task is to find the xor of the elements in the given index range for each query i.e. arr[l] ^ arr[l + 1] ^ ... ^ arr[r].

Examples: 

Input: arr[] = {1, 0, 1, 1, 0, 1, 1}, q[][] = {{0, 3}, {0, 2}} 
Output: 


Query 1: arr[0] ^ arr[1] ^ arr[2] ^ arr[3] = 1 ^ 0 ^ 1 ^ 1 = 1 
Query 1: arr[0] ^ arr[1] ^ arr[2] = 1 ^ 0 ^ 1 = 0

Input: arr[] = {1, 0, 1, 1, 0, 1, 1}, q[][] = {{1, 1}} 
Output:

Approach: The main observation is that the required answer will always be either 0 or 1. If the number of 1's in the given range are odd then the answer will be 1. Otherwise 0. To answer multiple queries in constant time, use a prefix sum array pre[] where pre[i] stores the number of 1's in the original array in the index range [0, i] which can be used to find the number of 1's in any index range of the given array.

Below is the implementation of the above approach: 

C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;

// Function to return Xor in a range
// of a binary array
int xorRange(int pre[], int l, int r)
{

    // To store the count of 1s
    int cntOnes = pre[r];
    if (l - 1 >= 0)
        cntOnes -= pre[l - 1];

    // If number of ones are even
    if (cntOnes % 2 == 0)
        return 0;

    // If number of ones are odd
    else
        return 1;
}

// Function to perform the queries
void performQueries(int queries[][2], int q,
                    int a[], int n)
{
    // To store prefix sum
    int pre[n];

    // pre[i] stores the number of
    // 1s from pre[0] to pre[i]
    pre[0] = a[0];
    for (int i = 1; i < n; i++)
        pre[i] = pre[i - 1] + a[i];

    // Perform queries
    for (int i = 0; i < q; i++)
        cout << xorRange(pre, queries[i][0],
                         queries[i][1])
             << endl;
}

// Driver code
int main()
{
    int a[] = { 1, 0, 1, 1, 0, 1, 1 };
    int n = sizeof(a) / sizeof(a[0]);

    // Given queries
    int queries[][2] = { { 0, 3 }, { 0, 2 } };
    int q = sizeof(queries) / sizeof(queries[0]);

    performQueries(queries, q, a, n);

    return 0;
}
Java
// Java implementation of the approach 
import java.util.*;

class GFG
{

// Function to return Xor in a range
// of a binary array
static int xorRange(int pre[], int l, int r)
{

    // To store the count of 1s
    int cntOnes = pre[r];
    if (l - 1 >= 0)
        cntOnes -= pre[l - 1];

    // If number of ones are even
    if (cntOnes % 2 == 0)
        return 0;

    // If number of ones are odd
    else
        return 1;
}

// Function to perform the queries
static void performQueries(int queries[][], int q,
                           int a[], int n)
{
    // To store prefix sum
    int []pre = new int[n];

    // pre[i] stores the number of
    // 1s from pre[0] to pre[i]
    pre[0] = a[0];
    for (int i = 1; i < n; i++)
        pre[i] = pre[i - 1] + a[i];

    // Perform queries
    for (int i = 0; i < q; i++)
        System.out.println(xorRange(pre, queries[i][0], 
                                         queries[i][1]));
}

// Driver code
public static void main(String[] args) 
{
    int a[] = { 1, 0, 1, 1, 0, 1, 1 };
    int n = a.length;

    // Given queries
    int queries[][] = { { 0, 3 }, { 0, 2 } };
    int q = queries.length;

    performQueries(queries, q, a, n);
}
}

// This code is contributed by Princi Singh
Python3
# Python3 implementation of the approach

# Function to return Xor in a range
# of a binary array
def xorRange(pre, l, r):

    # To store the count of 1s
    cntOnes = pre[r]
    if (l - 1 >= 0):
        cntOnes -= pre[l - 1]

    # If number of ones are even
    if (cntOnes % 2 == 0):
        return 0

    # If number of ones are odd
    else:
        return 1

# Function to perform the queries
def performQueries(queries, q, a, n):
    
    # To store prefix sum
    pre = [0 for i in range(n)]

    # pre[i] stores the number of
    # 1s from pre[0] to pre[i]
    pre[0] = a[0]
    for i in range(1, n):
        pre[i] = pre[i - 1] + a[i]

    # Perform queries
    for i in range(q):
        print(xorRange(pre, queries[i][0], 
                            queries[i][1]))

# Driver code
a = [ 1, 0, 1, 1, 0, 1, 1 ]
n = len(a)

# Given queries
queries = [[ 0, 3 ], [ 0, 2 ]]
q = len(queries)

performQueries(queries, q, a, n)

# This code is contributed by Mohit Kumar
C#
// C# implementation of the approach 
using System;

class GFG
{

// Function to return Xor in a range
// of a binary array
static int xorRange(int []pre, int l, int r)
{

    // To store the count of 1s
    int cntOnes = pre[r];
    if (l - 1 >= 0)
        cntOnes -= pre[l - 1];

    // If number of ones are even
    if (cntOnes % 2 == 0)
        return 0;

    // If number of ones are odd
    else
        return 1;
}

// Function to perform the queries
static void performQueries(int [,]queries, int q,
                           int []a, int n)
{
    // To store prefix sum
    int []pre = new int[n];

    // pre[i] stores the number of
    // 1s from pre[0] to pre[i]
    pre[0] = a[0];
    for (int i = 1; i < n; i++)
        pre[i] = pre[i - 1] + a[i];

    // Perform queries
    for (int i = 0; i < q; i++)
        Console.WriteLine(xorRange(pre, queries[i, 0], 
                                        queries[i, 1]));
}

// Driver code
public static void Main() 
{
    int []a = { 1, 0, 1, 1, 0, 1, 1 };
    int n = a.Length;

    // Given queries
    int [,]queries = { { 0, 3 }, { 0, 2 } };
    int q = queries.Length;

    performQueries(queries, q, a, n);
}
}

// This code is contributed
// by Akanksha Rai
JavaScript
<script>

// Javascript implementation of the approach

// Function to return Xor in a range
// of a binary array
function xorRange(pre, l, r)
{

    // To store the count of 1s
    let cntOnes = pre[r];
    if (l - 1 >= 0)
        cntOnes -= pre[l - 1];

    // If number of ones are even
    if (cntOnes % 2 == 0)
        return 0;

    // If number of ones are odd
    else
        return 1;
}

// Function to perform the queries
function performQueries(queries, q, a, n)
{
    // To store prefix sum
    let pre = new Array(n);

    // pre[i] stores the number of
    // 1s from pre[0] to pre[i]
    pre[0] = a[0];
    for (let i = 1; i < n; i++)
        pre[i] = pre[i - 1] + a[i];

    // Perform queries
    for (let i = 0; i < q; i++)
        document.write(xorRange(pre, queries[i][0],
                         queries[i][1]) + "<br>");
}

// Driver code
    let a = [ 1, 0, 1, 1, 0, 1, 1 ];
    let n = a.length;

    // Given queries
    let queries = [ [ 0, 3 ], [ 0, 2 ] ];
    let q = queries.length;

    performQueries(queries, q, a, n);

</script>

Output: 
1
0

 

Time Complexity: O(n + q), where n is the size of the given array and q is the number of queries given.
Auxiliary Space: O(n), where n is the size of the given array


Next Article
Practice Tags :

Similar Reads