LLM Apps in Java Using LangChain4j
LangChain4j is a powerful Java framework that simplifies the integration of large language models (LLMs) into Java applications. It provides tools for prompt engineering, vector search, and building intelligent agents. This article explores how Java developers can leverage LangChain4j to build LLM-powered applications, with practical examples and useful resources.
1. Understanding LangChain4j
LangChain4j is the Java adaptation of the LangChain framework, designed to facilitate the development of applications powered by LLMs. It offers a comprehensive toolbox that includes:
- Prompt templating
- Chat memory management
- Function calling
- Agents and Retrieval-Augmented Generation (RAG)
For more details, visit the LangChain4j GitHub repository.GitHub
2. Structured Prompt Engineering
Structured prompts are essential for guiding LLMs to produce consistent and accurate outputs. LangChain4j provides utilities for creating and managing structured prompts.
Example: Creating a Structured Prompt
import dev.langchain4j.model.input.structured.StructuredPrompt; import dev.langchain4j.model.input.structured.StructuredPromptUtil; @StructuredPrompt public class OrderStatusPrompt { private final String orderId; public OrderStatusPrompt(String orderId) { this.orderId = orderId; } public String toPrompt() { return StructuredPromptUtil.join(this); } }
In this example, the OrderStatusPrompt
class is annotated with @StructuredPrompt
, enabling LangChain4j to process it appropriately. The toPrompt
method uses StructuredPromptUtil.join
to generate the final prompt string.
For more information, refer to the StructuredPrompt.Util documentation.
3. Implementing Vector Search
Vector search allows for semantic retrieval of information by comparing vector representations of data. LangChain4j supports integration with various vector databases, such as MongoDB Atlas and Couchbase.
Example: Integrating MongoDB Atlas Vector Search
import dev.langchain4j.store.embedding.mongodb.MongoDBEmbeddingStore; import dev.langchain4j.model.embedding.EmbeddingModel; EmbeddingModel embeddingModel = ...; // Initialize your embedding model MongoDBEmbeddingStore embeddingStore = new MongoDBEmbeddingStore("mongodb://localhost:27017", "myDatabase", "embeddings"); embeddingStore.addEmbedding("documentId", embeddingModel.embed("Your document text here"));
This code snippet demonstrates how to store embeddings in MongoDB Atlas using LangChain4j. For a comprehensive tutorial, check out the MongoDB Atlas integration guide.
4. Building LLM Agents
LangChain4j enables the creation of intelligent agents that can perform tasks by interacting with LLMs and external tools.
Example: Creating a Simple Agent
import dev.langchain4j.agent.Agent; import dev.langchain4j.agent.tool.Tool; public class SupportAgent { @Tool("CheckOrderStatus") public String checkOrderStatus(String orderId) { // Logic to check order status return "Order " + orderId + " is being processed."; } public static void main(String[] args) { Agent agent = Agent.builder() .addTool(new SupportAgent()) .build(); String response = agent.chat("What is the status of order 12345?"); System.out.println(response); } }
In this example, the SupportAgent
class defines a tool checkOrderStatus
that the agent can use to respond to queries. The Agent
is built by adding the tool and can then process user inputs.
For a detailed walkthrough, refer to the LangChain4j examples repository.
5. Additional Resources
- LangChain4j Documentation: GitHub Docs
- Couchbase Vector Search Tutorial: Developer Guide
- Oracle AI Vector Search Integration: Medium Article
- MongoDB Atlas Vector Search Integration: MongoDB Docs
- Building AI Chatbots with LangChain4j: Baeldung TutorialGitHubDeveloper Portal | Couchbase+1MongoDB+1MediumMongoDBBaeldung+1Baeldung+1
By leveraging LangChain4j, Java developers can seamlessly integrate LLM capabilities into their applications, enabling advanced features like structured prompt engineering, vector search, and intelligent agents. The framework’s comprehensive tools and integrations make it a valuable asset for modern AI-driven Java applications