
Freescale Semiconductor, Inc.
Application Note

© 2015 Freescale Semiconductor, Inc. All rights reserved.

 

1 Introduction
When establishing communication with third party products 
there are cases when the data whitening and CRC algorithms 
available in hardware are not compatible between devices. 
To overcome this limitation, this application note provides a 
software-based implementation.

The use case presented, contains a Packet Error Rate (PER) 
application using the Kinetis KW01 microcontrollers, where 
IBM data whitening and CRC calculations are implemented 
in software to comply with the hardware algorithms of third 
party products.

2 Abstract
This application note describes a use case in which the 
KW01 microcontroller interacts with another KW01 MCU 
(emulating a third party device such as TI’s CC1110) by 
implementing data whitening and CRC computations in 
software.

Tools required to run this application are the IAR Embedded 
Workbench for ARM® v7.10 (or newer) and the Freescale 
Tower System using the TWR-RF development board.

Document Number: AN5070
Rev. 0, 07/2015

Contents
1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
2. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
3. Principle of data whitening . . . . . . . . . . . . . . . . . . . . . . .  2
4. Hardware implementation in KW01 MCUs . . . . . . . . . .  2
5. Hardware implementation for application  . . . . . . . . . . .  4
6. Software implementation application pre-configuration  10
7. Application procedure  . . . . . . . . . . . . . . . . . . . . . . . . .  13
8. Summary of software implementation . . . . . . . . . . . . .  19
9. Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
10. References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
11. Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Implementing Data Whitening and 
CRC Verification in Software in 
Kinetis KW01 Microcontrollers



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

2 Freescale Semiconductor, Inc.
 

Principle of data whitening

3 Principle of data whitening
In an RF system, transmitted data is grouped into packets. These packets may contain long sequences of 
0's and 1's which can introduce a DC bias into the transmitted signal. A radio signal with a DC bias will 
have a non-uniform power distribution over the occupied channel bandwidth. A DC bias will also 
introduce data dependencies during normal operation of the demodulator. However, it is optimal for the 
transmitted data to be random and DC free. 

As will be discussed, CCITT data whitening processes the data packets byte-per-byte, whereas IBM data 
whitening processes the data packets bit-per-bit. The data is whitened using a random sequence during 
transmit and de-whitened during receive using the same sequence.

NOTE

Two techniques are available in the packet handler: Manchester encoding 
and data whitening, however, for the purpose of this application note we will 
focus only in the data whitening implementation available in the Kinetis 
KW01 devices. 

• Only one of the two methods should be enabled at a time.

• For more details on the Manchester encoding option please refer to the 
MKW01xxRM reference manual (See Section 10, “References.”) 

Data whitening is only used when the user’s data has a high correlation of long strings of 0’s and 1’s. If the 
data is already random then whitening is not required. For example, when a random source generates the 
transmit data such that the whitened data produces the longer strings of 0’s and 1’s, then it is not required 
to randomize an already random sequence.

4 Hardware implementation in KW01 MCUs
KW01 microcontrollers support data whitening and CRC verification within the hardware. Understanding 
the register programming is a pre-requisite for the software implementation presented later. This section 
provides the CRC register and CCITT data whitening register settings.

4.1 CRC verification and register settings

A cyclic redundancy check (CRC) is often required to confirm the validity of the data received.

Figure 1 provides the register setting to enable the CRC verification. The CRC verification is enabled by 
setting the CrcOn bit in the RegPacketConfig1(0x37) register. This function evaluates the integrity of the 
transmitted signal.



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 3
 

Hardware implementation in KW01 MCUs

Figure 1. RegPacketConfig1 (CrcOn field) register

• During transmit—A two-byte CRC checksum is calculated on the payload of the packet and 
appended to the end of the message.

• During receive—the checksum is calculated on the received payload and compared with the two 
checksum bytes received. The result of the comparison is stored in bit CrcOk, in the transceiver’s 
register RegIrqFlags2(0x28). See Figure 2.

Figure 2. RegIrqFlags2 (CrcOk flag) register

By default, when the CRC verification fails then the FIFO is automatically cleared and no interrupt is 
generated. This filtering function can be disabled via CrcAutoClearOff bit and in this case, even if CRC 
fails, the FIFO is not cleared and only the PayloadReady interrupt goes high. Please note that in both cases, 
the two CRC checksum bytes are removed by the packet handler and only the payload is made available 
in the FIFO.



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

4 Freescale Semiconductor, Inc.
 

Hardware implementation for application

Figure 3. RegPacketConfig1 (CrcAutoClearOff bit) register

4.2 CCITT data whitening register settings

The KW01 microcontrollers use CCITT1 data whitening. To enable whitening or de-whitening the user 
must set the field DcFree=10 in the transceiver’s register RegPacketConfig1(0x37).

Figure 4. RegPacketConfig1 (DcFree field) register

5 Hardware implementation for application
When communicating with another KW01 device or with a device from another vendor that supports the 
same data whitening structure in hardware as the KW01 device (CCITT data whitening) the whitening and 
de-whitening is transparent to the user who must only configure the transceiver registers in hardware to be 
compliant between devices.

The problem occurs when the devices are not compatible in hardware with the different data whitening 
structures. For example, one device supports CCITT data whitening (KW01 devices) and a third party 
device supports IBM data whitening (an alternate whitening technique). In this scenario, a software 
implementation on one of the devices is the only way to enable compatibility and to whiten or de-whiten 
the data for successful communication between devices.

5.1 IBM data whitening method

This section describes the IBM data whitening process and provides code and code examples. 

1. Consultative Committee for International Telephony (CCITT) is now part of the International Telecommunications
Union-Telecommunication Standardization Sector (ITU-T), 



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 5
 

Hardware implementation for application

5.1.1 IBM data whitening structure

As explained earlier, CCITT data whitening processes data packets byte-per-byte, whereas IBM data 
whitening processes the data packet bit-per-bit as shown in Figure 5.

The process to whiten the data is similar but the result of the whitening sequence is different. The user must 
ensure that the same whitening algorithm is used in the devices to be compliant and establish 
communication.

Figure 5. IBM data whitening polynomial

5.1.2 IBM data whitening example

Whitening key:

The initial value of the whitening key is set to all ones (1 1111 1111), this is 0xFF plus a ninth bit that we 
will call the Most Significant Bit (MSB).

The Least Significant Bit (LSB) or X0 is XOR-ed with the value of the fifth bit (X4) to generate the new 
MSB (refer to the MSB of line 2 in Table 1), then the whitening key is shifted one position to the right. 
This process counts as 1 loop. The same process must be completed eight times and the result will be the 
New Whitening Key + the MSB.

Table 1. Whitening key process

MSB (X8) X7 X6 X5 X4 X3 X2 X1 X0 Counter Hex Value —

1 1 1 1 1 1 1 1 1 — 0xFF Start Key

0 1 1 1 1 1 1 1 1 1 — —

0 0 1 1 1 1 1 1 1 2 — —

0 0 0 1 1 1 1 1 1 3 — —

0 0 0 0 1 1 1 1 1 4 — —

1 0 0 0 0 1 1 1 1 5 — —



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

6 Freescale Semiconductor, Inc.
 

Hardware implementation for application

When this process is followed it will provide the following whitening keys.

Let’s assume that we have a four byte payload that we want to whiten as shown in Table 3.

The payload (Table 3) XOR-ed with the whitening keys (Table 2) will produce the whitened data that will 
be transmitted.

5.1.3 IBM data whitening software implementation

The IBM data whitening software implementation is presented in Figure 6. This implementation can be 
used to either whiten or de-whiten the data.

1 1 0 0 0 0 1 1 1 6 — —

1 1 1 0 0 0 0 1 1 7 — —

1 1 1 1 0 0 0 0 1 8 0xE1 New key

Table 2. IBM whitening keys

Byte Number Whitening Key

0 0xFF

1 0xE1

2 0x1D

3 0x9A

Table 3. Example 1 raw data (un-whitened)

Address Data

0 0x11

1 0x22

2 0x33

3 0x44

Table 4. Example IBM whitened data results

Byte Number Whitening Key Data Whitened Data (XOR-ed) De-Whitened Data

0 0xFF 0x11 0xEE 0x11

1 0xE1 0x22 0xC3 0x22

2 0x1D 0x33 0x2E 0x33

3 0x9A 0x44 0xDE 0x44

Table 1. Whitening key process (continued)

MSB (X8) X7 X6 X5 X4 X3 X2 X1 X0 Counter Hex Value —



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 7
 

Hardware implementation for application

Figure 6. IBM data whitening in software

5.2 CCITT data whitening method

This section describes the CCITT data whitening process and provides code and code examples. 

5.2.1 CCITT data whitening structure

CCITT data whitening is available in hardware for the KW01 microcontrollers, however, when a third 
party device is required to communicate with the KW01 microcontrollers this algorithm must be 
implemented in software. 

The data whitening process is built around a 9-bit Linear Feedback Shift Register (LFSR) used to generate 
a random sequence. The payload and 2-byte CRC checksum are then XORed with this random sequence 
as shown in Figure 7. The data is de-whitened on the receiver side by XORing with the same random 
sequence. This setup limits the number of consecutive 0’s or 1’s to nine.

Payload whitening or de-whitening is thus made transparent for the user, who continues to provide and 
retrieve NRZ data to and from the FIFO.

Figure 7. Data whitening polynomial available in hardware (CCITT whitening)



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

8 Freescale Semiconductor, Inc.
 

Hardware implementation for application

5.2.2 CCITT data whitening example

Whitening key

The LFSR polynomial is the same polynomial as for IBM data whitening (X9 + x5 + 1), but the whitening 
process is executed by XORing the LSB at the output of the LFSR with the MSB of the data as shown in 
Figure 7.

The initial value of the IBM data whitening key is set to all ones (1 1111 1111), this is 0xFF plus a ninth 
bit (MSB).

When this process is followed, then it will provide the data whitening keys provided in Table 5.

Let’s assume that we have the same four-byte payload (as shown in Table 3) that we want to whiten using 
CCITT data whitening. That provides the whitened data by XOR-ing the CCITT data whitening keys with 
the data given in Table 6.

5.2.3 CCITT data whitening software implementation

The CCITT data whitening software implementation consists of shifting the LFSR for every new bit of 
data and to XOR the LSB of the last flip-flop (X0) with the MSB of the incoming data. This 
implementation can be used to either whiten or de-whiten the data.

Table 5. CCITT whitening keys

Byte Number Whitening Key

0 0xFF

1 0x87

2 0xB8

3 0x59

Table 6. Example CCITT data whitened results

Byte Number Whitening Key Data Whitened Data (XOR-ed) De-Whitened Data

0 0xFF 0x11 0xEE 0x11

1 0x87 0x22 0xA5 0x22

2 0xB8 0x33 0x8B 0x33

3 0x59 0x44 0x1D 0x44



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 9
 

Hardware implementation for application

Figure 8. CCITT data whitening in software

5.3 CRC validation in hardware
In combination with data whitening, it is common to have a CRC validation at the end of the payload to 
verify the integrity of the transmission signal—that is, to validate the data received. There are two similar 
algorithms widely used that enable this verification: IBM-based and CCITT- based CRC.

The KW01 microcontroller’s CRC is based on the CCITT polynomial as shown in Figure 9. This 
implementation also detects errors due to leading and trailing zeros.

Figure 9. CRC validation in hardware (CCITT polynomial)

This CRC algorithm is enabled in hardware by setting the CrcOn bit in RegPacketConfig1 as shown in 
Figure 1.

5.4 CRC validation in software

When CRC implementation in hardware is not compatible between devices (for example, one device 
supports CCITT CRC (KW01 MCUs) and a third party device supports IBM CRC) it is also required to 
implement the CRC calculation algorithm in software.

To use the CRC algorithm within software the user must disable CRC calculation in hardware, this is done 
by setting the CrcOn bit to zero in RegPacketConfig register.

The algorithm to calculate CRC by software is shown in Figure 10.



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

10 Freescale Semiconductor, Inc.
 

Software implementation application pre-configuration

Figure 10. CRC algorithm implementation in software

6 Software implementation application pre-configuration 
The code for this application note is based on the simple range demo application. The simple range 
demonstration runs as a standalone application that enables performing dynamic range tests.

The simple demonstration consists of two nodes:

• TX node

• RX node

In addition to the simple range demonstration functionality a Packet Error Rate (PER) test is implemented. 
The PER test enables the user by way of a serial terminal interface to evaluate the performance of the 
communication between two devices.

The demo can be run without a serial terminal as a range test demo. However, if the user wants to evaluate 
PER test then the serial terminal interface is required.



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 11
 

Software implementation application pre-configuration

6.1 Packet frames

For this application the radio is configured in Packet Mode (operation mode), with a variable length packet 
format.

Variable length packet format is selected when the PacketFormat bit is set to 1 in the RegPacketConfig1 
register.

Figure 11. PacketFormat bit in RegPacketConfig1 register

An illustration of a variable length packet is shown in Figure 12 and contains the following fields:

• Preamble (1010…)

• Sync word (Network ID)

• Length byte

• Optional address byte (Node ID)

• Message data

• Optional 2 bytes CRC checksum

Figure 12. Variable length packet frame used in this application

In this application the default variable length packet frame has been modified as shown in Figure 12. The 
following list provides a summary of these modifications:

1.  Address filtering: To disable this option set AddressFiltering bits to 00 in RegPacketConfig1. 

2. CRC checksum: Provided as part of the payload (not included automatically by hardware). 
CRC is disabled in hardware by turning off bit CrcOn from PacketConfig1.

3. DC free (data whitening): Not included because it will be implemented by software. 
DC free is disabled in hardware by turning off DcFree bits from PacketConfig1.



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

12 Freescale Semiconductor, Inc.
 

Software implementation application pre-configuration

Figure 13. DcFree, CrcOn, and AddressFiltering fields in RegPacketConfig1 register

After applying the modifications as shown in Figure 13, the new packet frame identifies the CRC as now 
part of the payload. 

Figure 14. Application packet frame

Preamble: 

The preample can be 0x55 or 0xAA, this is required for synchronization, the longer the synchronization 
the better the packet success rate. At least 12 bits are required for synchronization, in this application we 
use 4 bytes.

Sync Word (Network ID):

Sync word size can be set from 1 to 8 bytes; in this application we use 4 bytes (0xF4EEF4EE).

Length:

1 byte for data length (0x14). 1 byte for Payload length (part of the payload) + 17 payload bytes + 2 bytes 
for CRC (required to add CRC functionality by software)

Message:

17 bytes for message. 0x5A + 0xA5 + 4 bytes for Sequence Number (little-endian) + 0xCC+ 0xCC+ 
0xCC+ 0xCC+ 0xCC+ 0xCC+ 0xCC+ 0xCC+ 0xCC+ 0xCC+ 0xCC 

Preamble Sync Word Length Message CRC

4 Bytes 4 Bytes 1 Byte 17 Bytes 2 Bytes

Payload



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 13
 

Application procedure

CRC:

2 bytes for CRC calculation by software.

6.2 Radio settings

The RF default configuration for the application is show in Table 7.

7 Application procedure
A pre-requisite to implement the software application in the Kinetis KW01 device is the Freescale Tower 
System and the TWR-RF development board. Also required is the IAR Embedded Workbench by ARM 
Limited.

A PER test application with CRC and data whitening features by software can be found in AN5070SW. 
This PER test application is mounted on the simple range demo application.

7.1 Open the application in IAR Embedded Workbench for ARM v7.10 
(or newer)

1. Open IAR Embedded Workbench for ARM v7.10.

2. Select Open and then Workspace from the File menu and locate the folder where the project was 
extracted as shown in Figure 15.

Table 7. Radio settings

Feature Default Value

Center Frequency 868 MHz

BitRate 50 Kbps

Frequency Deviation 25 KHz

RxBw 135 KHz

Modulation FSK

Filter BT_1

Output power 13 dBm

PA_Boost Disabled (RFIO output)

SMAC Transmission Broadcast

http://fsls.co/doc/AN5070SW
http://fsls.co/doc/AN5070SW


Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

14 Freescale Semiconductor, Inc.
 

Application procedure

Figure 15. Opening a Workspace in IAR Embedded Workbench

3. Obtain the application project AN5070SW. Extract the project, locate the folder where the 
application project was extracted.

4. Select the project (SimpleRangeDemo.eww) and drag and drop it into IAR Embedded Workbench 
workspace as shown in Figure 16.

Figure 16. Import the application into IAR workspace

7.1.1 Configure the application (TX and RX nodes)

The device type and settings are configured in the application configuration file (ApplicationConf.h).

• Select gTxNode_c for the transmitter device. (Figure 17)

http://fsls.co/doc/AN5070SW
http://fsls.co/doc/AN5070SW


Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 15
 

Application procedure

Figure 17. Selecting TX device in software

• Select gRxNode_c for the receiver device. (Figure 18)

Figure 18. Selecting RX device in software

• Select the total number of packets to send for the PER test by modifying PerTotalPackets_c. 
(Figure 19)

Figure 19. Selecting number of packets for PER test

• Select time delay in ms between packets in gDelayBetweenPacketsInMs_c. (Figure 20)

Figure 20. Selecting delay (in mili seconds) between packets 



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

16 Freescale Semiconductor, Inc.
 

Application procedure

7.1.2 Run the application

To run the application you must connect and configure the transmit and receive nodes as follows.

• On the TX node: the LEDs will flash twice to indicate that this is the TX device.

• On the RX node: the LEDs will flash once to indicate that this is the RX device.

Connect both boards to a serial terminal and configure using the parameters shown in Figure 21.

Figure 21. Terminal configuration

After the application begins it displays a message indicating that the application is waiting for the user to 
press switch 1 in both (TX/RX) devices.

Both devices turn on LED D1 on the Freescale Tower System, TWR-RF board to indicate that the 
application has begun.

Figure 22. First message in terminal in PER test RX node



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 17
 

Application procedure

Figure 23. First message in terminal in PER test TX node

Press switch 1 in RX node to begin the receive process.

Figure 24. Running message in PER test RX node

Press switch 2 in TX node to begin transmitting packets. 

Figure 25. Running message in PER test TX node



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

18 Freescale Semiconductor, Inc.
 

Application procedure

7.1.3 Identify application behavior

The application behavior for transmit and receive nodes is identified as follows.

On the TX node: LED D4 from the TWR-RF board flashes when a packet has been transmitted.

On the RX node: LED D4 from the TWR-RF board flashes when a valid CRC is identified, and LED D2 
flashes for an invalid CRC.

When the PER test is completed, the results of the test can be viewed in the terminal and the user has the 
option to restart the test by pressing software switch 1 as shown in Figure 26.

Figure 26. PER test finished message in TX node

Figure 27. PER test finished message in RX node



Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 19
 

Summary of software implementation

8 Summary of software implementation
In brief, to apply data whitening and CRC verification to your application with software use the following 
the sequences:

For TX:

1. Calculate CRC of the payload starting from the data length byte, but do not include the last two 
bytes (those are reserved to store the CRC calculation result).

2. Include the CRC calculation to the last two bytes of the payload.

3. Compute data whitening to the entire payload buffer (including the last two CRC bytes).

4. Transmit the message.

 For RX:

1. Compute data de-whitening to the reception buffer.

2. Calculate CRC verification to this de-whitened buffer, but do not include the last two CRC bytes.

3. Compare the result of this CRC calculation to the CRC of the reception buffer (last two bytes of 
this buffer).

4. If the CRC is equal, then the reception process continues to Successful RX packet; if the CRC is 
not equal then the process goes to CRC Error Indication.

9 Conclusions
Full compatibility in hardware among products in the market is a rare. To overcome these constraints 
software implementations such as the data whitening and CRC verification discussed in this document are 
necessary to enable devices to communicate with each other regardless of the limitation in hardware.

Prior to implementing data whitening and CRC verification by software, the programmer must disable this 
functionality in the device hardware by writing to the corresponding registers.

10 References
The chapters within this application note summarize the important details of each topic. For more details 
on the specific topics within this document, see the device reference manual, specifically for information 
and details about the KW01 transceiver’s registers and device hardware capabilities. 

• Kinetis Sub-1 GHz Low Power Transceiver plus Microcontroller Reference Manual (Document 
Number: MKW01xxRM)

A PER test application with CRC and data whitening is located at www.freescale.com with the filename:

• AN5070SW

11 Revision history
Revision 0 is the initial release of this application note.

http://fsls.co/doc/AN5070SW


Document Number: AN5070
Rev. 0

07/2015

Information in this document is provided solely to enable system and software 

implementers to use Freescale products. There are no express or implied copyright 

licenses granted hereunder to design or fabricate any integrated circuits based on the 

information in this document.

Freescale reserves the right to make changes without further notice to any products 

herein. Freescale makes no warranty, representation, or guarantee regarding the 

suitability of its products for any particular purpose, nor does Freescale assume any 

liability arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or incidental 

damages. “Typical” parameters that may be provided in Freescale data sheets and/or 

specifications can and do vary in different applications, and actual performance may 

vary over time. All operating parameters, including “typicals,” must be validated for 

each customer application by customer’s technical experts. Freescale does not convey 

any license under its patent rights nor the rights of others. Freescale sells products 

pursuant to standard terms and conditions of sale, which can be found at the following 

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page: 
freescale.com 

Web Support: 
freescale.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale 

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are 

the property of their respective owners. ARM, Cortex, and IAR Embedded Workbench 

are registered trademarks of ARM Limited. 

© 2015 Freescale Semiconductor, Inc.

 
 


	Implementing Data Whitening and CRC Verification in Software in Kinetis KW01 Microcontrollers
	1 Introduction
	2 Abstract
	3 Principle of data whitening
	4 Hardware implementation in KW01 MCUs
	4.1 CRC verification and register settings
	Figure 1. RegPacketConfig1 (CrcOn field) register
	Figure 2. RegIrqFlags2 (CrcOk flag) register
	Figure 3. RegPacketConfig1 (CrcAutoClearOff bit) register

	4.2 CCITT data whitening register settings
	Figure 4. RegPacketConfig1 (DcFree field) register


	5 Hardware implementation for application
	5.1 IBM data whitening method
	5.1.1 IBM data whitening structure
	Figure 5. IBM data whitening polynomial

	5.1.2 IBM data whitening example
	Table 1. Whitening key process
	Table 2. IBM whitening keys
	Table 3. Example 1 raw data (un-whitened)
	Table 4. Example IBM whitened data results

	5.1.3 IBM data whitening software implementation
	Figure 6. IBM data whitening in software


	5.2 CCITT data whitening method
	5.2.1 CCITT data whitening structure
	Figure 7. Data whitening polynomial available in hardware (CCITT whitening)

	5.2.2 CCITT data whitening example
	Table 5. CCITT whitening keys
	Table 6. Example CCITT data whitened results

	5.2.3 CCITT data whitening software implementation
	Figure 8. CCITT data whitening in software


	5.3 CRC validation in hardware
	Figure 9. CRC validation in hardware (CCITT polynomial)

	5.4 CRC validation in software
	Figure 10. CRC algorithm implementation in software


	6 Software implementation application pre-configuration
	6.1 Packet frames
	Figure 11. PacketFormat bit in RegPacketConfig1 register
	Figure 12. Variable length packet frame used in this application
	Figure 13. DcFree, CrcOn, and AddressFiltering fields in RegPacketConfig1 register
	Figure 14. Application packet frame

	6.2 Radio settings
	Table 7. Radio settings


	7 Application procedure
	7.1 Open the application in IAR Embedded Workbench for ARM v7.10 (or newer)
	Figure 15. Opening a Workspace in IAR Embedded Workbench
	Figure 16. Import the application into IAR workspace
	7.1.1 Configure the application (TX and RX nodes)
	Figure 17. Selecting TX device in software
	Figure 18. Selecting RX device in software
	Figure 19. Selecting number of packets for PER test
	Figure 20. Selecting delay (in mili seconds) between packets

	7.1.2 Run the application
	Figure 21. Terminal configuration
	Figure 22. First message in terminal in PER test RX node
	Figure 23. First message in terminal in PER test TX node
	Figure 24. Running message in PER test RX node
	Figure 25. Running message in PER test TX node

	7.1.3 Identify application behavior
	Figure 26. PER test finished message in TX node
	Figure 27. PER test finished message in RX node



	8 Summary of software implementation
	9 Conclusions
	10 References
	11 Revision history
	Contact information


