|
y

'
A

Freescale Semiconductor, Inc.

Implementing Data Whitening and
CRC Verification in Software in
Kinetis KW01 Microcontrollers

il Document Number: AN5070
Application Note Rev. 0, 07/2015

1 Contents

1 IntrOdUCtlon 1. Introductiont 1
When establishing communication with third party products > APSfa - -ooeee e !
9 X i party p . 3. Principle of datawhitening 2

there are caseswhen the datawhitening and CRC algorithms 4. Hardware implementation in KWO1MCUs 2
available in hardware are not compatible between devices. 5. Hardwareimplementation for application 4
To overcome this limitation, this application note providesa & Seftwareimplementation gpplication pre-configuration 10
. . 7. Applicationprocedure 13
software-based Impl ementation. 8. Summary of softwareimplementation 19
The use case presented, contains a Packet Error Rate (PER) 196 g;”;ﬁl‘s """""""""""""""""" ig
application using the KinetisKWO1 microcontrollers, where 11 revisonisoryo 10

IBM data whitening and CRC cal culations are implemented
in software to comply with the hardware algorithms of third
party products.

2 Abstract

This application note describes a use case in which the
KWO01 microcontroller interacts with another KW01 MCU
(emulating athird party device such as TI's CC1110) by
implementing data whitening and CRC computationsin
software.

Toolsrequired to run thisapplication are the |AR Embedded
Workbench for ARM® v7.10 (or newer) and the Freescale
Tower System using the TWR-RF devel opment board.

© 2015 Freescale Semiconductor, Inc. All rights reserved.

S

Z“ freescale"

|
y

'
A

Principle of data whitening

3 Principle of data whitening

In an RF system, transmitted datais grouped into packets. These packets may contain long sequences of
O'sand 1'swhich can introduce a DC bias into the transmitted signal. A radio signal with a DC bias will
have a non-uniform power distribution over the occupied channel bandwidth. A DC bias will also
introduce data dependencies during normal operation of the demodulator. However, it is optimal for the
transmitted data to be random and DC free.

Aswill be discussed, CCITT data whitening processes the data packets byte-per-byte, whereas IBM data
whitening processes the data packets bit-per-bit. The datais whitened using a random sequence during
transmit and de-whitened during receive using the same sequence.

NOTE

Two techniques are available in the packet handler: Manchester encoding
and datawhitening, however, for the purpose of thisapplication notewewill
focus only in the data whitening implementation available in the Kinetis
KWO0L1 devices.

* Only one of the two methods should be enabled at atime.
» For more details on the Manchester encoding option please refer to the
MKWO1xxRM reference manual (See Section 10, “References.”)

Datawhitening isonly used when the user’s data has ahigh correlation of long stringsof 0'sand 1's. If the
datais already random then whitening is not required. For example, when a random source generates the
transmit data such that the whitened data produces the longer strings of 0'sand 1's, then it is not required
to randomize an aready random sequence.

4 Hardware implementation in KW01 MCUs

KWO01 microcontrollers support datawhitening and CRC verification within the hardware. Understanding
the register programming is a pre-requisite for the software implementation presented later. This section
provides the CRC register and CCITT data whitening register settings.

4.1 CRC verification and register settings
A cyclic redundancy check (CRC) is often required to confirm the validity of the data received.

Figure 1 provides the register setting to enable the CRC verification. The CRC verification is enabled by
setting the CrcOn bit in the RegPacketConfigl(0x37) register. This function evaluates the integrity of the
transmitted signal.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

2 Freescale Semiconductor, Inc.

Hardware implementation in KW01 MCUs

RegPacketConfig1
(0X37)

PacketFormat

Defines the packet format used:
0 - Fixed length
1 - \ariable length

6-5

DcFree

00

Defines DC-free encoding/deceding performed:
00 - None (Off)

01 = Manchester

10 = Whitening

11 = reserved

CrcOn

Enables CRC calculation/check (TX/RX):
0> Off
1->0n

Figure 1. RegPacketConfigl (CrcOn field) register

* During transmit—A two-byte CRC checksum is calculated on the payload of the packet and

appended to the end of the message.

» During receive—the checksum is calculated on the received payload and compared with the two
checksum bytes received. The result of the comparison is stored in bit CrcOk, in the transceiver’s

register ReglrqFlags2(0x28). See Figure 2.

ReglrgFlags2
(0x28)

7

FifoFull

0 Set when FIFO is full (i.e. contains 66 bytes),
else cleared.

6

FifoNotEmpty

0 Set when FIFO contains at least one byte, else
cleared

FifoLevel

0 Set when the number of bytes in the FIFO
strictly exceeds FifoThreshold, else cleared.

FifoOverrun

0 Set when FIFO overrun occurs. (except in
Sleep mode)

Flag(s) and FIFO are cleared when this bit is
set. The FIFO then becomes immediately
available for the next transmission / reception.

PacketSent

0 Set in TX when the complete packet has been
sent
Cleared when exiting TX.

PayloadReady

0 Set in RX when the payload is ready (i.e. last
byte received and CRC, if enabled and
CreAutoClearOff is cleared, is Ok). Cleared
when FIFO is empty.

CrcOk

0 Set in RX when the CRC of the payload is Ok.
Cleared when FIFO is empty.

LowBat

Set when the battery voltage drops below the
Low Battery threshold. Cleared only when set
by the user.

Figure 2. ReglrgFlags2 (CrcOk flag) register

By default, when the CRC verification fails then the FIFO is automatically cleared and no interrupt is
generated. Thisfiltering function can be disabled via CrcAutoClear Off bit and in this case, even if CRC
fails, the FIFO isnot cleared and only the PayloadReady interrupt goes high. Please note that in both cases,
the two CRC checksum bytes are removed by the packet handler and only the payload is made available

in the FIFO.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc.

Hardware implementation for application

RegPacketConfigl | 7 |PacketFormat w 0 Defines the packet format used:
(0x37) 0 - Fixed length
1 - Variable length

6-5 |DcFree w 00 Defines DC-free encoding/decoding performed:
00 = None (Off)

01 = Manchester

10 = Whitening

11 > reserved

4 |CreOn w 1 Enables CRC calculation/check (TX/RX):
0 > Off
1->0n

3 | CrcAutoClearOff w 0 Defines the behavicr of the packet handler when CRC
check fails:

0 = Clear FIFO and restart new packet reception. No
PayloadReady interrupt issued.
1 = Do not clear FIFO. PayloadReady interrupt issued.

Figure 3. RegPacketConfigl (CrcAutoClearOff bit) register

4.2 CCITT data whitening register settings

The KWO1 microcontrollers use CCITT? data whiteni ng. To enable whitening or de-whitening the user
must set the field DcFree=10 in the transceiver’s register RegPacketConfigl(0x37).

RegPacketConfigl| 7 |PacketFormat w 0] Defines the packet format used:
(0x37) 0 - Fixed length
1 = Variable length

6-5 |DcFree w 00 | Defines DC-free encoding/decoding performed:
00 > None (Off)

01 - Manchester

10 = Whitening

11 = reserved

Figure 4. RegPacketConfigl (DcFree field) register

5 Hardware implementation for application

When communicating with another KWO1 device or with a device from another vendor that supports the
same data whitening structurein hardware asthe KWO1 device (CCITT datawhitening) the whitening and
de-whitening istransparent to the user who must only configure the transceiver registersin hardwareto be
compliant between devices.

The problem occurs when the devices are not compatible in hardware with the different data whitening
structures. For example, one device supports CCITT data whitening (KWO01 devices) and athird party
device supports IBM data whitening (an alternate whitening technique). In this scenario, a software
implementation on one of the devicesis the only way to enable compatibility and to whiten or de-whiten
the data for successful communication between devices.

5.1 IBM data whitening method

This section describes the IBM data whitening process and provides code and code examples.

1. Consultative Committee for International Telephony (CCITT) isnow part of the International Telecommunications
Union-Telecommunication Standardization Sector (ITU-T),

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

4 Freescale Semiconductor, Inc.

Hardware implementation for application

51.1 IBM data whitening structure

Asexplained earlier, CCITT data whitening processes data packets byte-per-byte, whereas IBM data
whitening processes the data packet bit-per-bit as shown in Figure 5.

The processto whiten the dataissimilar but the result of the whitening sequenceisdifferent. The user must
ensure that the same whitening algorithm is used in the devices to be compliant and establish
communication.

LFSR Polynomial =X"+ X5 + 1

| | 1
Lo X® :‘—LK" X6 el X5 e X' e XO? ;___—LK) ;ﬂ—LX‘ - XP |
' |
> b || D > | | >
= |
| .
L]
vy v o L t+
H/
Transmit cata_;a__,-;) > Whitened data

Figure 5. IBM data whitening polynomial

5.1.2 IBM data whitening example

Whitening key:

Theinitial value of the whitening key is set to all ones (1 1111 1111), thisis OXFF plus a ninth bit that we
will call the Most Significant Bit (MSB).

The Least Significant Bit (LSB) or X° is XOR-ed with the value of the fifth bit (X*) to generate the new
MSB (refer to the MSB of line 2 in Table 1), then the whitening key is shifted one position to the right.
This process counts as 1 loop. The same process must be completed eight times and the result will be the
New Whitening Key + the MSB.

Table 1. Whitening key process

MSB (X&) | X7 | X8 | x5 | x4 | x3 | X2 | xt | X% | Counter |Hex Value —

— OxFF Start Key

|l o|lo| ol o r
Pl RrlRr| R R R
Pl RrlRr|Rr|Rr]| R
Pl RrlRr|Rr|Rr| R
Pl RrlRr| R PR
gl sl w| M| R

o|lo|r|r|RLr|Fr
ol r|Rr|Rr|Rr|r

1
1
1
0
0
0

OoO| OoO| O| Of| R, | R

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 5

Hardware implementation for application

Table 1. Whitening key process (continued)

MSB (X&) | X7 | X8 | x5 | x4 | x3 | x2 | xt | X% | Counter |Hex Value —
1 1|/o0]lo|lo|o0|1]|1]1 6 — —
1 1|/ 1]o0|lo0]|o0|o0]|1]1 7 — —
1 1 |/1]1l0]|0|o0]|o0]a1 8 OXE1 New key

When this processis followed it will provide the following whitening keys.
Table 2. IBM whitening keys

Byte Number Whitening Key
0 OxFF
1 OxE1l
2 0x1D
3 O0x9A

Let’s assume that we have afour byte payload that we want to whiten as shown in Table 3.

Table 3. Example 1 raw data (un-whitened)

Address Data
0 Ox11
1 0x22
2 0x33
3 0x44

The payload (Table 3) XOR-ed with the whitening keys (Table 2) will produce the whitened data that will
be transmitted.

Table 4. Example IBM whitened data results

Byte Number Whitening Key Data Whitened Data (XOR-ed) De-Whitened Data
0 OxFF 0x11 OxEE Ox11
1 OxE1l 0x22 0xC3 0x22
2 0x1D 0x33 Ox2E 0x33
3 O0x9A 0x44 OxDE 0x44

5.1.3

The IBM data whitening software implementation is presented in Figure 6. This implementation can be
used to either whiten or de-whiten the data.

IBM data whitening software implementation

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

6 Freescale Semiconductor, Inc.

Hardware implementation for application

#include "Datawhitening.h"

static uint®_t WhiteningKeyMSB
static uintd_t WhiteningKeyL3B

//Global variables so the value 1s kept after starting the de-vhitening process

/7/Init values for the LFSR, at the start of a whitening or a de-whitening process

xxx

kiten / de-whiten
ten
into the pointer

xxx 7
void RadicComputeWhitening(uintd_t *buffer, uintlé_t bufferSize) //IBM Whitening
{
uinté_t i = 0:
uintlé £ j = 0;
uinté_t WhiteningKeyMSBFrevious = 0; //8th bit of the LEFSR
for{ j = 07 J < buffer3ize; j++) /7byte counter
{
buffer[j] ~= WhiteningKeyL3B; /7XOR betveen the data and the vhitening key
for{ i = 0; i € &; i++) //8-bit shift between each byte
{
WhiteningKeyMSBPrevicus = WhiteningKeyMSB;
WhiteningKeyM5B = (WhiteningKeyL5B & 0x01) ~ ((WhiteningWeyLlSB >> 5) & 0x01);
WhiteningKeyLSB= ((WhiteningKeyLSB >> 1 } & OxFF) | { { WhiteningKeyMSBPrevicus << 7) & (x20);
}
}

Figure 6. IBM data whitening in software

5.2 CCITT data whitening method

This section describes the CCITT data whitening process and provides code and code examples.

5.2.1 CCITT data whitening structure

CCITT datawhitening is available in hardware for the KWO01 microcontrollers, however, when athird
party deviceis required to communicate with the KWO1 microcontrollers this algorithm must be
implemented in software.

The datawhitening processisbuilt around a9-bit Linear Feedback Shift Register (LFSR) used to generate
arandom sequence. The payload and 2-byte CRC checksum are then X ORed with this random sequence
as shown in Figure 7. The data is de-whitened on the receiver side by XORing with the same random
sequence. This setup limits the number of consecutive 0's or 1'sto nine.

Payload whitening or de-whitening is thus made transparent for the user, who continues to provide and
retrieve NRZ datato and from the FIFO.

LFSR Polynomial =X3 + X7 + 1

T

WE W HE S W X3 K2 K1 Ko

Transmit data ;D— Whitened data

Figure 7. Data whitening polynomial available in hardware (CCITT whitening)

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 7

Hardware implementation for application

5.2.2 CCITT data whitening example
Whitening key

The LFSR polynomial isthe same polynomial asfor IBM datawhitening (X9 +x°+ 1), but the whitening
process is executed by XORing the LSB at the output of the LFSR with the MSB of the data as shown in
Figure 7.

Theinitial value of the IBM data whitening key is set to all ones (1 1111 1111), thisis OxFF plus a ninth
bit (MSB).

When this processis followed, then it will provide the data whitening keys provided in Table 5.
Table 5. CCITT whitening keys

Byte Number Whitening Key
0 OxFF
1 0x87
2 0xB8
3 0x59

L et’s assume that we have the same four-byte payload (as shown in Table 3) that we want to whiten using
CCITT datawhitening. That providesthe whitened databy XOR-ing the CCITT datawhitening keyswith
the data given in Table 6.

Table 6. Example CCITT data whitened results

Byte Number | Whitening Key Data Whitened Data (XOR-ed) De-Whitened Data
0 OxFF 0x11 OxEE 0x11
1 0x87 0x22 O0xA5 0x22
2 0xB8 0x33 0x8B 0x33
3 0x59 0x44 0x1D 0x44

5.2.3 CCITT data whitening software implementation

The CCITT data whitening software implementation consists of shifting the LFSR for every new bit of
data and to XOR the L SB of the last flip-flop (XO) with the MSB of the incoming data. This
implementation can be used to either whiten or de-whiten the data.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

8 Freescale Semiconductor, Inc.

Hardware implementation for application

void RadicComputeWhitening CCIT{ uint&_t *buffer, uintlé_t bufferSize) //CCIT Whitening
{
uintd_ t i = 07
uintlé t j = 07
uint?é_t WhiteningKeyMSBPrevious
uintd_t revertedWhiteningKeyL3BE iH
revertedihiteningKevLSE = WhiteningKevyLSE; S/WniteningHeyLSE 15 OxFF at init
for{ j = 0; j < bufferSize - 1; j++)
{
buffer[]] = revertediWhiteningKeyL3B;
for{ i =10; 1 < &; i++)
{
WhiteningKeyM3BPrevious = WhiteningKeyM3B;

WhiteningKeyMSE = (WhiteningKeyL3B & 0x01) ~ { { WhiteningKeyL3E >> 5) & 0Ox0l1 };

WhiteningKeyLSB = { { { WhiteningKeyM5BPrevious << 7)} & 0x20 | (WhiteningKWeyLSE >> 1) & OxFF) };
}
revertediWhiteningkeyLSE = (WhiteningKeyLSB & 0xF0) >> 4 | (WhiteningHevyL5E & Ox0F) << 4;
revertedihiteningKeyL3E = (revertedWhiteningKeyLSBE & 0xCC) >> 2 | (revertedWhiteningKeyLSE & 0x33) << 2
revertediWhiteningKeyL3B = (revertedWhiteningKeyL3BE & OxR2) >> 1 | (revertedWhiteningKeyL3B & 0x55) << 1

Figure 8. CCITT data whitening in software

5.3 CRC validation in hardware

In combination with data whitening, it is common to have a CRC validation at the end of the payload to
verify theintegrity of the transmission signal—that is, to validate the datareceived. There are two similar
algorithms widely used that enable this verification: IBM-based and CCITT- based CRC.

The KWO01 microcontroller’s CRC is based on the CCITT polynomial as shown in Figure 9. This
implementation also detects errors due to leading and trailing zeros.

data input CRC Polynomial =X + X2 + X%+ 1

WIS L] MM fgd X7 lg] K12 Ly ¢ Xl m e XS Xt lg—nmn-a—] X0
{ A 4 g ¢ g g 4 \

Figure 9. CRC validation in hardware (CCITT polynomial)

This CRC algorithm is enabled in hardware by setting the CrcOn bit in RegPacketConfigl as shown in
Figure 1.

5.4 CRC validation in software

When CRC implementation in hardware is not compatible between devices (for example, one device
supports CCITT CRC (KW01 MCUs) and athird party device supports IBM CRC) it is also required to
implement the CRC calculation algorithm in software.

To usethe CRC agorithm within software the user must disable CRC calculation in hardware, thisisdone
by setting the CrcOn bit to zero in RegPacketConfig register.

The algorithm to calculate CRC by software is shown in Figure 10.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 9

Software implementation application pre-configuration

6

uintlé_t RadiocComputeClRC({ uinti_t *buffer, uintd_t length, uinti_t crclype)
{
uintd_t i = 0;
uintlé t crc = 0;
uintlé_t polynomial = 0;
polynomial = { crcIype == CRC_TYPE IBM) ? POLYNOMIAL IBM : POLYNOMIAL CCITT;
crc = (crclype == CRC_TYFE IBM) ? CRC_IBM SEED : CRC CCITT_SEED;
for(i = 0; i < length; i++)
{
crc = ComputeCrc{ crc, buffer[i], polynomial);
}
if{ crcType == CRC_TYFE IEM)
{
return crcy
}
else
{
return{ { uintlé t) (~crec));
}
}

uintlé_t Computelrc(uintlé t crc, uintd_t dataByte, uintlé t polynomial)

{

uintd_t i:
for{ i =0; 1 < &; i++)
{
if{ ({({ crc & 0xE8000) »>» &) ~ (dacaByte & Ox20)) '= 0}
{
cro <<= 17 A4 shift left once
crc = polynomial; 4/ XOR with polynomial
}
else
{
croc <<= 1; /¢ shift left once
}
dataByte <<= 1; /¢ Next data bit

}

return crc;

}
Figure 10. CRC algorithm implementation in software

Software implementation application pre-configuration

The code for this application note is based on the simple range demo application. The simple range
demonstration runs as a standalone application that enables performing dynamic range tests.

The simple demonstration consists of two nodes:

TX node
RX node

In addition to the simple range demonstration functionality a Packet Error Rate (PER) test isimplemented.
The PER test enables the user by way of a serial terminal interface to evaluate the performance of the
communication between two devices.

The demo can be run without aserial terminal asarange test demo. However, if the user wantsto evaluate
PER test then the serial terminal interface is required.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

10

Freescale Semiconductor, Inc.

Software implementation application pre-configuration

6.1 Packet frames

For thisapplication theradio is configured in Packet M ode (operation mode), with avariablelength packet
format.

Variable length packet format is selected when the PacketFormat bit is set to 1 in the RegPacketConfigl
register.

RegPacketConfig1 7 | PacketFormat w 0 Defines the packet format used:
(0x37) 0 - Fixed length
1 = Variable length

6-5 |DcFree rw 00 Defines DC-free encoding/decoding performed:
00 - None (Off)

01 < Manchester

10 = Whitening

11 = reserved

Figure 11. PacketFormat bit in RegPacketConfigl register

Anillustration of avariable length packet is shown in Figure 12 and contains the following fields:
* Preamble (1010...)
» Sync word (Network ID)
» Length byte
» Optiona address byte (Node ID)
* Message data
e Optiona 2 bytes CRC checksum

————————————DC e aencodng ————————>
&——CRC checksum calculation _—

< AES Enc/Dec >
Length| dress Message
byte Up to 255 bytes
Payload
€ Tmin 2 bytes) >

== Fields added by the packet handler in Tx and processed and removed in Rx

== Optional User provided fields which are part of the payload
— Message part of the payload

Figure 12. Variable length packet frame used in this application

In this application the default variable length packet frame has been modified as shown in Figure 12. The
following list provides a summary of these modifications:

1. Addressfiltering: To disable this option set AddressFiltering bits to 00 in RegPacketConfigl.

2. CRC checksum: Provided as part of the payload (not included automatically by hardware).
CRC isdisabled in hardware by turning off bit CrcOn from PacketConfigl.

3. DC free (datawhitening): Not included because it will be implemented by software.
DC freeisdisabled in hardware by turning off DcFree bits from PacketConfigl.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 11

Software implementation application pre-configuration

RegPacketConfig1 | 7 |PacketFormat w o] Defines the packet format used:
(0x37) 0 = Fixed length
1 = Variable length

6-5 | DcFree w 00 Defines DC-free encoding/decoding performed:
=—»| 00 > None (Off)

01 = Manchester

10 = Whitening

11 = reserved

4 | CrcOn w 1 Enables CRC calculation/check (TX/RX):
- |0 > Off
1=>0n
3 | CrcAutoClearOff nw 0 Defines the behavior of the packet handler when CRC
check fails:

0 = Clear FIFO and restart new packet reception. No
PayloadReady interrupt issued.
1 = Do not clear FIFO. PayloadReady interrupt issued.

2-1 | AddressFiltering w 00 Defines address based filtering in RX:

= | 00 > None (Off)

01 = Address field must match NodeAddress
10 = Address field must match NodeAddress or
BroadcastAddress

11 = reserved

0 |- rw 0 unused

Figure 13. DcFree, CrcOn, and AddressFiltering fields in RegPacketConfigl register

After applying the modifications as shown in Figure 13, the new packet frame identifies the CRC as now
part of the payload.

Preamble Sync Word Length Message CRC
4 Bytes 4 Bytes 1 Byte 17 Bytes 2 Bytes
Payload

Figure 14. Application packet frame

Preamble:

The preample can be 0x55 or OXAA, thisis required for synchronization, the longer the synchronization
the better the packet success rate. At least 12 bits are required for synchronization, in this application we
use 4 bytes.

Sync Word (Network ID):
Sync word size can be set from 1 to 8 bytes; in this application we use 4 bytes (OXFAEEF4EE).
Length:

1 byte for datalength (Ox14). 1 byte for Payload length (part of the payload) + 17 payload bytes + 2 bytes
for CRC (required to add CRC functionality by software)

Message:

17 bytes for message. Ox5A + OxA5 + 4 bytes for Sequence Number (little-endian) + OXCC+ OxCC+
OXCC+ OXCC+ OxCC+ OxCC+ 0xCC+ 0xCC+ 0xCC+ 0xCC+ 0xCC

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

12 Freescale Semiconductor, Inc.

Application procedure

CRC:
2 bytesfor CRC calculation by software.

6.2 Radio settings

The RF default configuration for the application is show in Table 7.
Table 7. Radio settings

Feature Default Value
Center Frequency 868 MHz
BitRate 50 Kbps
Frequency Deviation 25 KHz
RxBw 135 KHz
Modulation FSK
Filter BT_1
Output power 13 dBm
PA_Boost Disabled (RFIO output)
SMAC Transmission Broadcast

7 Application procedure

A pre-requisite to implement the software application in the Kinetis KWO1 deviceis the Freescale Tower
System and the TWR-RF development board. Also required isthe IAR Embedded Workbench by ARM
Limited.

A PER test application with CRC and data whitening features by software can be found in AN5070SW.
This PER test application is mounted on the simple range demo application.

7.1 Opentheapplicationin IAR Embedded Workbench for ARMv7.10

(or newer)

1. Open IAR Embedded Workbench for ARM v7.10.
2. Select Open and then Workspace from the File menu and locate the folder where the project was
extracted as shown in Figure 15.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 13

http://fsls.co/doc/AN5070SW
http://fsls.co/doc/AN5070SW

X

Application procedure

I[Fle| Edit view Project Tools Window
o

New (o YR ErePEAR BTRAILL
Open 3 File... CTRL-O LRE 2
los Workspace... .
Save Workspace Header/Source File CTRL+ MAYUSCULAS-H P 4 s
Close Workspace 5 A il =T 1115] 7 Y] [11]fs8]lg 4 111s] t|3 11
LARLRARRRRRERRRLRRRRRRRRRRRURARULRRLRRRARRRERRRRRRRURRRURRRURRRERRRERURURRRLRRERRRLRARRURRARRRLRRRERRRERARURRRURRRLRRRIVRRLVARURRRLLRA

Save
S JEre e e T 3% TN
i GIAR
Page Setup... SOTEMS
Print TRL+P
Recent Files 3
Recent Workspaces »
Exit

Guldelines fo setting up

your project adding

files, compiling, linking,

4 cabugging it
%
IAR CSPY debugger contact in dormation, and
chesk yout SUA status
Open a Workspace NUM =
e ——

Figure 15. Opening a Workspace in IAR Embedded Workbench

3. Obtain the application project AN5070SW. Extract the project, locate the folder where the
application project was extracted.
4. Select the project (SimpleRangeDemo.eww) and drag and drop it into |AR Embedded Workbench
workspace as shown in Figure 16.
(=@][=] T & 1AR Embedded Workbench IDE
vl‘, || Search SimpleRangeDema MKWOL jJ| File' Edit View Project Tools™ Window Help
hare with + Burn » = » [@ Workspace x
Mame 3 Date mo [b
|| settings 111420 | || FeS £
.. Simple Range Demo 11/14/20
|1| SimpleRangeDemo.eww 5/29/201
Drag & drop the file B
"SimpleRangeDemo.eww" into the “
IAR workspace drop here
Figure 16. Import the application into IAR workspace
7.1.1 Configure the application (TX and RX nodes)

The device type and settings are configured in the application configuration file (ApplicationConf.h).

Select gTxNode_c for the transmitter device.

Implementing Data Whitening and CRC Verification i

(Figure 17)

n Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

14

Freescale Semiconductor, Inc.

http://fsls.co/doc/AN5070SW
http://fsls.co/doc/AN5070SW

Application procedure

main | PhyISR_ ApplicationConf * | i
$define gFregBand_c gSMAC_902_928MHz_c
$define gPowerhmplifier_c gDisablePA_Boost_c
[#ifdef MEWOL_NA
//#define gDefaultOutputPover (0x11) //-1dBm for PA0 and PAl. Default settings for N
#define gDefaultOutputPower {0X1E) //For the purpose of the Range Demonstration th
[#endif
o #ifdef MEWO1_EU
#define gDefaultOutputPower (0x1F) //13dBm for PAO and PAl
[#endif
#define gDeviceType ¢ gTxNode ¢ //qRxNode ¢ or gTxNods ¢
#define gSimpleRangePayloadlength c 20 #/1 Payload length + 17 payload bytes + 2 Bytes
#define gDelayBetweenPacketslnMs c 1000 //Delay betveen packets in Ms
#define PerTotalPackets_c 20 //Total Packets for Packet error rate
/* Simpls Range Demo Configuration Paramsters Definition End #/

Figure 17. Selecting TX device in software

» Select gRxNode_c for the receiver device. (Figure 18)

main | PhyISR AppiicationConf | 0
/* Simple Range Demo_Configuration Paramsters Definition Start #/

#define gfreqBand c gSMAC 902 92EMHz c
#define gPowerkmplifier c gDisablePA Boost c

#ifdef MKWOL NA
//#define gDefaultOutputPover (0x11) //-1dBm for PAU and PAl. Default settings for I
#define gDefaultOutputPower (0x1F) //For the purpose of the Range Demonstration th
#endif

#ifdef MEWO1_EU

#define ghefaultOutputPover {0x1F) //13dBm for PAO and PAl

#endif

#define gheviceType_c gRallode_c //gRxlods & or gTxNode

#define gSimpleRangeFayloadlength_c 20 //1 Payload length + 17 payload bytes + 2 Bytes
#define ghelayBetweenPacketsInMs c 1000 //Delay bstween ts in Ms

#define PerTotalPackets c 20 //Total Peckets et error rate

/* Simple Range Demo_Configuration Peremsters Definition End +/

Figure 18. Selecting RX device in software

» Select thetotal number of packets to send for the PER test by modifying Per TotalPackets c.
(Figure 19)

main | PhyIsR_| ApplicationConf * | 0
define gFreqBand_c aSMAC_902_928MHz_c
define gPowerlmplifier_c aDissbleA_Bost_c
(] #ifdef MEWOL_NA
//#define gDefaultOutputPover (0x11) //-1dBm for PAO and PAl. Default settings for N,
define gDefaultfurputEower (ox1F) //For the purpose of the Range Demonstration th:
| gendir
(] #ifdef MEWOL_EU
2define gDefaultfurputEower (0x1F) //13dBm for PAO and PA1
| gendir
2define gDeviceType_c aTslode_c J/oRellode & or oTallsde =
$define gSimpleRangePaylosdlength_c 20 //1 Payload length + 17 payload bytss + 7 Bytss
2define gDelayBetwesnPacketsTrMs_o 1000 //Delay betwesn pasksts in Ms
#define PerToralPackets c 20 //Total Packets for Packet error rate
/+ Simple Range Demo Configuration Farameters Definition End +/

Figure 19. Selecting number of packets for PER test

» Select time delay in ms between packets in gDelayBetweenPacketsinMs_c. (Figure 20)

main | FhylsR._| ApplicationConf * | 0
#define gFreqBand ¢ gSMAC 902 92BMHz ¢
#define gPowerhmplifier c gDiseblePA Boost c
[#ifdef MKWOL NA
//#define gDefaultOutputPover (0x11 //-1dBm for PA0 and PAl. Default settings for N:
#define gDefaultOutputPower (0x1F) //For the purpose of the Range Demonstration th:
[#endif
[#ifdef MEWOL_EU
#define ghefaultOutputPower (0x1F) //13dBm for PAQ and PA1
[#endif
#define gDeviceType c gTxliode_c //gRxNode_c or gTxNode ¢
#define gSimpleRangePayloadlength_c 20 //1 Payload len + 17 payload bytes + 2 Bytes
#define gDelayBetweenPacketsInMs_c 1000 //Delay between packets in Ms
#define PerTotalPackets_c 20 //Total Packets for Packet error rate
/* Simple Range Demo Configuration Parameters Definition End +/

Figure 20. Selecting delay (in mili seconds) between packets

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 15

Application procedure

7.1.2 Run the application

To run the application you must connect and configure the transmit and receive nodes as follows.
* Onthe TX node: the LEDs will flash twice to indicate that thisisthe TX device.
* Onthe RX node: the LEDs will flash once to indicate that thisis the RX device.

Connect both boards to a serial terminal and configure using the parameters shown in Figure 21.

Baud rate: 38400 -
Data: 8 bit -
Parity: none -
Stop: 1 bit -
Flow control: none -

Figure 21. Terminal configuration

After the application begins it displays a message indicating that the application iswaiting for the user to
press switch 1 in both (TX/RX) devices.

Both devicesturn on LED D1 on the Freescale Tower System, TWR-RF board to indicate that the
application has begun.

‘L COM10:38400baud - Tera Term VT

File Edit Setup Control Window Help

Press switch 1 to start PER test (Rx>

Figure 22. First message in terminal in PER test RX node

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

16 Freescale Semiconductor, Inc.

‘. COM10:38400baud - Tera Term VT

Application procedure

File Edit Setup Control Window Help

Press switch 1 to start PER (Tx>

Figure 23. First message in terminal in PER test TX node

Press switch 1 in RX node to begin the receive process.

. COM10:38400baud - Tera Term VT e AR M e i e

File Edit Setup Control Window Help

Press switch 1 to start PER test (Rx»
Biunning PER test ¢(Rx>. Receiving packets

Figure 24. Running message in PER test RX node

Press switch 2 in TX node to begin transmitting packets.

T
‘L COM10:38400baud - Tera Term VT

File Edit Setup Control Window Help

Press switch 1 to start PER <(Tx>
Running PER {(Tx>. Sending 28 packets

Figure 25. Running message in PER test TX node

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc.

17

Application procedure

7.1.3 Identify application behavior
The application behavior for transmit and receive nodes is identified as follows.
On the TX node: LED D4 from the TWR-RF board flashes when a packet has been transmitted.

On the RX node: LED D4 from the TWR-RF board flashes when avalid CRC isidentified, and LED D2
flashes for an invalid CRC.

When the PER test is completed, the results of the test can be viewed in the terminal and the user has the
option to restart the test by pressing software switch 1 as shown in Figure 26.

4 COM10:38400baud - Tera Term VT =S X

File Edit Setup Control Window Help

Press switch 1 to start PER (Tx»
Running PER <Tx>. Sending 28 packets
PER Finished (Tx>.

;PBSS switch 1 to start PER (Tx?

Figure 26. PER test finished message in TX node

R ——— . - - W W G 1
i COM10:38400baud - Tera Term VT | B

Filems EditmSetnpmsEontiolmWindowssHelp

Press switch 1 to start PER test (Rx)
Running PER test {(Bx). Receiving packets
PER test finished <{Rx>

28 of 28 packets received successfully

;ress switch 1 to start PER test (Rx>

Figure 27. PER test finished message in RX node

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

18 Freescale Semiconductor, Inc.

Summary of software implementation

8 Summary of software implementation

In brief, to apply data whitening and CRC verification to your application with software use the following
the sequences:
For TX:

1. Caculate CRC of the payload starting from the data length byte, but do not include the last two
bytes (those are reserved to store the CRC calculation result).

2. Include the CRC calculation to the last two bytes of the payload.
3. Compute data whitening to the entire payload buffer (including the last two CRC bytes).
4. Transmit the message.

For RX:
1. Compute data de-whitening to the reception buffer.
2. Cadculate CRC verification to this de-whitened buffer, but do not include the last two CRC bytes.

3. Compare the result of this CRC calculation to the CRC of the reception buffer (last two bytes of
this buffer).

4. If the CRC isequal, then the reception process continues to Successful RX packet; if the CRC is
not equal then the process goesto CRC Error Indication.

9 Conclusions

Full compatibility in hardware among products in the market is arare. To overcome these constraints
software implementations such as the datawhitening and CRC verification discussed in this document are
necessary to enable devices to communicate with each other regardless of the limitation in hardware.

Prior to implementing datawhitening and CRC verification by software, the programmer must disablethis
functionality in the device hardware by writing to the corresponding registers.

10 References

The chapters within this application note summarize the important details of each topic. For more details
on the specific topics within this document, see the device reference manual, specifically for information
and details about the KWO1 transceiver’s registers and device hardware capabilities.

» Kinetis Sub-1 GHz Low Power Transceiver plus Microcontroller Reference Manual (Document
Number: MKWO01xxRM)

A PER test application with CRC and data whitening is located at www.freescale.com with the filename:
e AN5070SW

11 Revision history

Revision O isthe initial release of this application note.

Implementing Data Whitening and CRC Verification in Software in KW01 MCUs, AN5070, Rev. 0, 07/2015

Freescale Semiconductor, Inc. 19

http://fsls.co/doc/AN5070SW

How to Reach Us: Information in this document is provided solely to enable system and software
Home Page: implementers to use Freescale products. There are no express or implied copyright
freescale.com licenses granted hereunder to design or fabricate any integrated circuits based on the

Web Support: information in this document.

freescale.com/support Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are
the property of their respective owners. ARM, Cortex, and IAR Embedded Workbench
are registered trademarks of ARM Limited.

© 2015 Freescale Semiconductor, Inc.

Document Number: AN5070
Rev. 0
07/2015

W POWERED

ARM ..,
" freescale"

	Implementing Data Whitening and CRC Verification in Software in Kinetis KW01 Microcontrollers
	1 Introduction
	2 Abstract
	3 Principle of data whitening
	4 Hardware implementation in KW01 MCUs
	4.1 CRC verification and register settings
	Figure 1. RegPacketConfig1 (CrcOn field) register
	Figure 2. RegIrqFlags2 (CrcOk flag) register
	Figure 3. RegPacketConfig1 (CrcAutoClearOff bit) register

	4.2 CCITT data whitening register settings
	Figure 4. RegPacketConfig1 (DcFree field) register

	5 Hardware implementation for application
	5.1 IBM data whitening method
	5.1.1 IBM data whitening structure
	Figure 5. IBM data whitening polynomial

	5.1.2 IBM data whitening example
	Table 1. Whitening key process
	Table 2. IBM whitening keys
	Table 3. Example 1 raw data (un-whitened)
	Table 4. Example IBM whitened data results

	5.1.3 IBM data whitening software implementation
	Figure 6. IBM data whitening in software

	5.2 CCITT data whitening method
	5.2.1 CCITT data whitening structure
	Figure 7. Data whitening polynomial available in hardware (CCITT whitening)

	5.2.2 CCITT data whitening example
	Table 5. CCITT whitening keys
	Table 6. Example CCITT data whitened results

	5.2.3 CCITT data whitening software implementation
	Figure 8. CCITT data whitening in software

	5.3 CRC validation in hardware
	Figure 9. CRC validation in hardware (CCITT polynomial)

	5.4 CRC validation in software
	Figure 10. CRC algorithm implementation in software

	6 Software implementation application pre-configuration
	6.1 Packet frames
	Figure 11. PacketFormat bit in RegPacketConfig1 register
	Figure 12. Variable length packet frame used in this application
	Figure 13. DcFree, CrcOn, and AddressFiltering fields in RegPacketConfig1 register
	Figure 14. Application packet frame

	6.2 Radio settings
	Table 7. Radio settings

	7 Application procedure
	7.1 Open the application in IAR Embedded Workbench for ARM v7.10 (or newer)
	Figure 15. Opening a Workspace in IAR Embedded Workbench
	Figure 16. Import the application into IAR workspace
	7.1.1 Configure the application (TX and RX nodes)
	Figure 17. Selecting TX device in software
	Figure 18. Selecting RX device in software
	Figure 19. Selecting number of packets for PER test
	Figure 20. Selecting delay (in mili seconds) between packets

	7.1.2 Run the application
	Figure 21. Terminal configuration
	Figure 22. First message in terminal in PER test RX node
	Figure 23. First message in terminal in PER test TX node
	Figure 24. Running message in PER test RX node
	Figure 25. Running message in PER test TX node

	7.1.3 Identify application behavior
	Figure 26. PER test finished message in TX node
	Figure 27. PER test finished message in RX node

	8 Summary of software implementation
	9 Conclusions
	10 References
	11 Revision history
	Contact information

