
Proposal for C2y

WG14 N3261

Title: Allow zero length operations on null pointers

Author, affiliation: Nikita Popov, Red Hat

 Aaron Ballman, Intel

Date: 2024-05-13

Proposal category: Change in requirements

Target audience: Implementers, power users

Abstract: Proposes allowing null + 0, null - null and passing null to certain C standard library

functions if the length argument is also zero. This removes a class of undefined behavior and

brings the specification more in line with C++.

Prior art: C++, LLVM

Allow zero length operations on null

pointers
Reply-to: Nikita Popov (npopov@redhat.com), Aaron Ballman (aaron@aaronballman.com)

Document No: N3261

Revises Document No: N3177

Date: 2024-05-13

Summary of Changes

N3261

• Updated several footnotes

• Added wording to allow ordered comparison of two null pointers

N3177

● Initial proposal

Introduction

This proposal seeks to make the following three operations involving null pointers and zero

lengths well-defined:

● Adding or subtracting 0 to/from a null pointer results in a null pointer.

● Subtracting two null pointers results in 0.

● Calling memcpy, memmove, memset, memcmp and various other functions with a null

pointer argument and length 0 is well-defined.

The primary motivation is to avoid certain pitfalls and performance issues when using the

combination of a null pointer and zero length to represent an empty slice/span.

Additionally, this aligns C semantics closer to C++ semantics, which already considers the first

two cases well-defined.

Current wording

From 6.5.6 (Additive operators) paragraph 9:

mailto:npopov@redhat.com
mailto:aaron@aaronballman.com

When an expression that has integer type is added to or subtracted from a pointer, the result

has the type of the pointer operand. If the pointer operand points to an element of an array

object, and the array is large enough, the result points to an element offset from the original

element such that the difference of the subscripts of the resulting and original array elements

equals the integer expression. [...] If the pointer operand and the result do not point to

elements of the same array object or one past the last element of the array object, the

behavior is undefined. [...]

From 6.5.6 (Additive operators) paragraph 10:

When two pointers are subtracted, both shall point to elements of the same array object,

or one past the last element of the array object; the result is the difference of the subscripts

of the two array elements. [...]

From 7.24.5 (Searching and sorting utilities) paragraph 1:

These utilities make use of a comparison function to search or sort arrays of unspecified type.

Where an argument declared as size_t nmemb specifies the length of the array for a function,

nmemb can have the value zero on a call to that function; the comparison function is not called,

a search finds no matching element, and sorting performs no rearrangement. Pointer

arguments on such a call shall still have valid values, as described in 7.1.4.

From 7.26.1 (String function conventions) paragraph 2:

Where an argument declared as size_t n specifies the length of the array for a function, n can

have the value zero on a call to that function. Unless explicitly stated otherwise in the

description of a particular function in this subclause, pointer arguments on such a call

shall still have valid values, as described in 7.1.4. On such a call, a function that locates a

character finds no occurrence, a function that compares two character sequences returns zero,

and a function that copies characters copies zero characters.

The wording for the mem* functions does not "explicitly state otherwise", so it applies to these

functions.

From 7.31.4 (General wide string utilities) paragraph 2:

Where an argument declared as size_t n determines the length of the array for a function, n can

have the value zero on a call to that function. Unless explicitly stated otherwise in the

description of a particular function in this subclause, pointer arguments on such a call

shall still have valid values, as described in 7.1.4. On such a call, a function that locates a

wide character finds no occurrence, a function that compares two wide character sequences

returns zero, and a function that copies wide characters copies zero wide characters.

Motivation

It is common to use null pointers for the data pointer of empty containers or views. For example,

a known-length string could be represented using

struct str {

 char *data;

 size_t len;

};

where data may be a null pointer for empty strings. A string equality operation on such strings

could naively be implemented as follows:

bool str_eq(const struct str *str1, const struct str *str2) {

 return str1->len == str2->len &&

 memcmp(str1->data, str2->data, str1->len) == 0;

}

However, this would result in undefined behavior if both str1 and str2 were empty. Instead, a

variant like the following needs to be used:

bool str_eq(const struct str *str1, const struct str *str2) {

 return str1->len == str2->len &&

 (str1->len == 0 ||

 memcmp(str1->data, str2->data, str1->len) == 0);

}

Similarly, a naive implementation of concatenation could look like this:

void str_concat(struct str *res, const struct str *str1,

 const struct str *str2) {

 res->len = str1->len + str2->len;

 res->data = malloc(res->len); // error handling omitted for brevity

 memcpy(res->data, str1->data, str1->len);

 memcpy(res->data + str1->len, str2->data, str2->len);

}

However, this would once again cause undefined behavior if str1 or str2 are empty. Instead,

explicit zero length checks are necessary:

void str_concat(struct str *res, const struct str *str1,

 const struct str *str2) {

 res->len = str1->len + str2->len;

 res->data = malloc(res->len); // error handling omitted for brevity

 if (str1->len != 0) {

 memcpy(res->data, str1->data, str1->len);

 }

 if (str2->len != 0) {

 memcpy(res->data + str1->len, str2->data, str2->len);

 }

}

The requirement for the additional zero-length checks has a number of disadvantages:

● The check increases code size, potentially in common (inlined) code paths.

● The check decreases performance. Unless empty strings are common, it is preferable to fall

through to a call, which will handle the zero-length case implicitly.

● The check increases code complexity and requires careful attention from the programmer to

perform it in all necessary cases.

● Failure to perform the null check may result in a security vulnerability.

This problem extends beyond library functions to pointer arithmetic. Consider the following two

implementations of a memcpy-like function:

void copy(char *dst, const char *src, size_t n) {

 for (size_t i = 0; i < n; i++) {

 *dst++ = *src++;

 }

}

void copy2(char *dst, const char *src, size_t n) {

 for (const char *end = src + n; src < end; src++) {

 *dst++ = *src;

 }

}

These functions differ by whether they use an integer or a pointer as the induction variable.

While the former implementation is well-defined if src is a null pointer, the latter is not. Instead, it

would be necessary to explicitly guard against zero lengths:

void copy2(char *dst, const char *src, size_t n) {

 if (n == 0) {

 return;

 }

 for (const char *end = src + n; src < end; src++) {

 *dst++ = *src;

 }

}

As some library function implementations use these kinds of patterns, it is important to change

the requirements for both at the same time.

The pointer subtraction case is less common in practice, but may come up when a span/slice is

represented using a start and end pointer, instead of a start pointer and length.

Additionally, this is important for self-consistency: If p+i is well-defined and produces p2, then

p2-p should also be well-defined and produce i. As such, null - null should be well-defined

and produce 0.

Optimization impact

Library changes

Implementations for memory library functions will automatically handle the n==0 case correctly,

without dereferencing pointers. The current requirement for a non-null pointer for n==0 does not

allow implementations to assume that there is at least one dereferenceable byte, because the

pointer may legally point to the end of an object.

As such, allowing null pointers for n==0 will not require additional checks or other

pessimizations in C library implementations.

While not useful for library implementations, the current requirements can improve optimization

at the call-site. For example, a memcpy call on a known null pointer but unknown length can be

statically determined to cause undefined behavior, and the relevant code path optimized away.

After the proposed change, this would only be possible if the compiler can prove that the length

is non-zero. Of course, preventing this optimization from happening is an intentional part of the

proposed change (to enable other, more useful optimizations).

Pointer arithmetic changes

Clang/LLVM already do not perform any optimizations based on the fact that null+0 and null-null

result in undefined behavior. We are not aware of any practical cases where such optimizations

would be useful.

In fact, LLVM has recently relaxed its internal IR requirements to make adding zero to any

pointer (including "invalid" pointers) well-defined. This resulted in significant optimization

improvements, because it made transforms like replacing (c ? p : p + i) with p + (c ? 0

: i) well-defined.

Architectures with multiple null pointer values

Some architectures may have multiple null pointer values. For such architectures, the

requirement that subtracting any two null pointer values results in zero could, in theory, impose

additional performance overhead or implementation complexity. However, there is reason to

believe that this is not the case in practice.

All null pointer values (of compatible type) are already required to compare equal. As such, if an

architecture can support efficient pointer comparison, it stands to reason that it will also be able

to support efficient pointer subtraction, which will now have the equivalent requirement.

To provide a specific example, in CHERI architectures, pointers consist of two parts: An address

and metadata. As such, there may be multiple null pointer values, where the address part is

zero, while the metadata is different. However, pointer subtraction on CHERI architectures is

defined as the subtraction of the address parts only. As such, the new requirement is satisfied

automatically, without additional performance overhead or implementation complexity.

Current implementation behavior

Compiler behavior

Clang never makes use of the fact that null+0 and null-null result in undefined behavior for

optimization purposes. Under -fsanitize=undefined, Clang diagnoses adding zero to a null

pointer, but does not diagnose subtracting two null pointers.

GCC does not diagnose either case under -fsanitize=undefined. It is unknown whether it

performs optimizations despite the failure to diagnose, but simple tests do not show GCC taking

advantage of the UB: https://godbolt.org/z/qob5v6fh4.

Clang only respects __attribute__((nonnull)) on function definitions, but does not respect

it on declarations. This is done specifically so that nonnull annotations in libc headers are

ignored. This does not affect sanitizer behavior or compiler warnings, which do respect the

nonnull attributes.

GCC does respect nonnull attributes on declarations, and will optimize based on them.

Libc behavior

An interesting consideration is to what degree existing libc implementations are compatible with

the proposed changes for library call requirements. That is, are any issues expected if code

relying on the new requirements is linked against an old libc implementation?

Glibc declares mem* functions in headers using the following pattern:

extern int memcmp (const void *__s1, const void *__s2, size_t __n)

 __THROW __attribute_pure__ __nonnull ((1, 2));

The __nonnull macro will expand to __attribute__((__nonnull__ params)) when headers are

included by users of glibc, and as such the non-null requirements will apply. However, when the

glibc implementation itself is compiled, the macro will be defined as empty, such that the

implementation itself never introduces non-null assumptions, even when compiled with sanitizers.

(The actual implementation will often be provided in assembly, in which case non-null assumptions

are not made for the reasons outlined above: They aren't useful for anything.)

Musl libc and Apple libc do not use nonnull annotations even in user-facing headers. For example,

memcmp is declared as follows:

int memcmp (const void *, const void *, size_t);

Bionic libc annotates pointers using _Nonnull:

int memcmp(const void* _Nonnull __lhs, const void* _Nonnull __rhs, size_t __n)

 __attribute_pure__;

This means that null pointers can be diagnosed, but are explicitly not considered undefined

behavior.

Libc implementations that currently use some form of nonnull annotations should remove them to

comply with this change, but compilers can also mitigate their presence in the same way clang

currently does. No issues are expected when linking against old libc objects.

Proposed Wording

The wording proposed is a diff from the N3149 working draft of ISO/IEC 9899. Green text is new

text, while red text is deleted text.

Modify 6.5.6p9:

… the expression (Q)-1 points to the last element of the array object. If the pointer operand is

not null, and the pointer operand and result do not point to elements of the same array object or

one past the last element of the array object, the behavior is undefined. If the pointer operand is

a null pointer value and the integer operand is nonzero, the behavior is undefined.fnt) If the

addition or subtraction produces an overflow, the behavior is undefined. If the pointer operand is

null or the result points one past the last element of the array object, it shall not be used as the

operand of a unary * operator that is evaluated.

Add new footnote:
fnt) Thus, the expression ptr + N (where ptr is a null pointer value) is defined to result in a null

pointer value when N is zero and has undefined behavior otherwise.

Modify 6.5.6p10:

When two pointers are subtracted, both shall be null pointer values, point to elements of the

same array object, or one past the last element of the array object;. If both pointers are null

pointer values, the result is zero. Otherwise, the result is the difference of the subscripts of the

two array elements.

Modify 6.5.8p6:

When two pointers are compared, the result depends on the relative locations in the address

space of the objects pointed to, if any. Two null pointers compare equal. If two pointers to object

types both point to the same object, or both point one past the last element of the same array

object, they compare equal. If the objects pointed to are members of the same aggregate

object, pointers to structure members declared later compare greater than pointers to members

declared earlier in the structure, and pointers to array elements with larger subscript values

compare greater than pointers to elements of the same array with lower subscript values. All

pointers to members of the same union object compare equal. If the expression P points to an

element of an array object and the expression Q points to the last element of the same array

object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is

undefined.

Modify 7.24.5p1:

These utilities make use of a comparison function to search or sort arrays of unspecified type.

Where an argument declared as size_t nmemb specifies the length of the array for a function,

nmemb can have the value zero on a call to that function; the comparison function is not called,

a search finds no matching element, and sorting performs no rearrangement. Pointer arguments

on such a call shall still have valid values, as described in 7.1.4 may be null pointers.

Modify 7.24.5.1p5 and remove the associated footnote:

Otherwise, the argument shall be a pointer to an unqualified object type or a null pointer

constant,353) and the returned pointer will be a pointer to unqualified void.

Modify 7.26.1p3:

Where an argument declared as size_t n specifies the length of the array for a function, n can

have the value zero on a call to that function. Unless explicitly stated otherwise in the

description of a particular function in this subclause, pointer arguments on such a call shall still

have valid values, as described in 7.1.4 may be null pointers. On such a call, a function that

locates a character finds no occurrence, a function that compares two character sequences

returns zero, and a function that copies characters copies zero characters.

Modify footnote 379:

The null pointer constant is not a pointer to a const-qualified type, and therefore the result

expression has the type of a pointer to an unqualified element; however, evaluating such a call

is undefined.

Modify 7.31.4p2:

Where an argument declared as size_t n determines the length of the array for a function, n can

have the value zero on a call to that function. Unless explicitly stated otherwise in the

description of a particular function in this subclause, pointer arguments on such a call shall still

have valid values, as described in 7.1.4 may be null pointers. On such a call, a function that

locates a wide character finds no occurrence, a function that compares two wide character

sequences returns zero, and a function that copies wide characters copies zero wide

characters.

Modify footnote 427:

The null pointer constant is not a pointer to a const-qualified type, and therefore the result

expression has the type of a pointer to an unqualified element; however, evaluating such a call

is undefined.

Affected and not affected functions

The following table lists which functions from the relevant section are affected or not affected by

the change.

Function Affected Comment

bsearch Yes

qsort Yes

memcpy Yes

memccpy Yes

memmove Yes

strcpy No No argument n

strncpy Yes

strdup No No argument n

strndup Yes

strcat No No argument n

strncat Yes

memcmp Yes

strcmp No No argument n

strcoll No No argument n

strncmp Yes

strxfrm No This is an "unless otherwise specified"
function. n == 0 is used to determine the size
of the required buffer.

memchr Yes

strchr No No argument n

strpbrk No No argument n

strrchr No No argument n

strstr No No argument n

strtok No No argument n

memset Yes

memset_explicit Yes

strerror No No argument n

strlen No No argument n

wcstod, wcstof, wcstold No No argument n

wcstodN No No argument n

wcstol, wcstoll, wcstoul,
wcstoull

No No argument n

wcscpy No No argument n

wcsncpy Yes

wmemcpy Yes

wmemmove Yes

wcscat No No argument n

wcsncat Yes

wcscmp No No argument n

wcscoll No No argument n

wcsncmp Yes

wcsxfrm No See strxfrm

wmemcmp Yes

wcschr No No argument n

wcscspn No No argument n

wcspbrk No No argument n

wcsrchr No No argument n

wcsspn No No argument n

wcsstr No No argument n

wcstok No No argument n

wmemchr Yes

wcslen No No argument n

wmemset Yes

Acknowledgements

We would like to recognize the following people for their help in this work: Jens Gustedt, Joseph

Myers, David Stone, Robert Seacord, and David Benjamin.

