Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Artificial Intelligence By Example

You're reading from   Artificial Intelligence By Example Acquire advanced AI, machine learning, and deep learning design skills

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781839211539
Length 578 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning 2. Building a Reward Matrix – Designing Your Datasets FREE CHAPTER 3. Machine Intelligence – Evaluation Functions and Numerical Convergence 4. Optimizing Your Solutions with K-Means Clustering 5. How to Use Decision Trees to Enhance K-Means Clustering 6. Innovating AI with Google Translate 7. Optimizing Blockchains with Naive Bayes 8. Solving the XOR Problem with a Feedforward Neural Network 9. Abstract Image Classification with Convolutional Neural Networks (CNNs) 10. Conceptual Representation Learning 11. Combining Reinforcement Learning and Deep Learning 12. AI and the Internet of Things (IoT) 13. Visualizing Networks with TensorFlow 2.x and TensorBoard 14. Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component Analysis (PCA) 15. Setting Up a Cognitive NLP UI/CUI Chatbot 16. Improving the Emotional Intelligence Deficiencies of Chatbots 17. Genetic Algorithms in Hybrid Neural Networks 18. Neuromorphic Computing 19. Quantum Computing 20. Answers to the Questions 21. Other Books You May Enjoy
22. Index

Building a Reward Matrix – Designing Your Datasets

Experimenting and implementation comprise the two main approaches of artificial intelligence. Experimenting largely entails trying ready-to-use datasets and black box, ready-to-use Python examples. Implementation involves preparing a dataset, developing preprocessing algorithms, and then choosing a model, the proper parameters, and hyperparameters.

Implementation usually involves white box work that entails knowing exactly how an algorithm works and even being able to modify it.

In Chapter 1, Getting Started with Next-Generation Artifcial Intelligence through Reinforcement Learning, the MDP-driven Bellman equation relied on a reward matrix. In this chapter, we will get our hands dirty in a white box process to create that reward matrix.

An MDP process cannot run without a reward matrix. The reward matrix determines whether it is possible to go from one cell to another, from A to B. It is like a map of a city that tells you if you are allowed to take a street or if it is a one-way street, for example. It can also set a goal, such as a place that you would like to visit in a city, for example.

To achieve the goal of designing a reward matrix, the raw data provided by other systems, software, and sensors needs to go through preprocessing. A machine learning program will not provide efficient results if the data has not gone through a standardization process.

The reward matrix, R, will be built using a McCulloch-Pitts neuron in TensorFlow. Warehouse management has grown exponentially as e-commerce has taken over many marketing segments. This chapter introduces automated guided vehicles (AGVs), the equivalent of an SDC in a warehouse to store and retrieve products.

The challenge in this chapter will be to understand the preprocessing phase in detail. The quality of the processed dataset will influence directly the accuracy of any machine learning algorithm.

This chapter covers the following topics:

  • The McCulloch-Pitts neuron will take the raw data and transform it
  • Logistic classifiers will begin the neural network process
  • The logistic sigmoid will squash the values
  • The softmax function will normalize the values
  • The one-hot function will choose the target for the reward matrix
  • An example of AGVs in a warehouse

The topics form a list of tools that, in turn, form a pipeline that will take raw data and transform it into a reward matrix—an MDP.

You have been reading a chapter from
Artificial Intelligence By Example - Second Edition
Published in: Feb 2020
Publisher: Packt
ISBN-13: 9781839211539
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Visually different images