Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-on Machine Learning with JavaScript

You're reading from   Hands-on Machine Learning with JavaScript Solve complex computational web problems using machine learning

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788998246
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Burak Kanber Burak Kanber
Author Profile Icon Burak Kanber
Burak Kanber
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Exploring the Potential of JavaScript FREE CHAPTER 2. Data Exploration 3. Tour of Machine Learning Algorithms 4. Grouping with Clustering Algorithms 5. Classification Algorithms 6. Association Rule Algorithms 7. Forecasting with Regression Algorithms 8. Artificial Neural Network Algorithms 9. Deep Neural Networks 10. Natural Language Processing in Practice 11. Using Machine Learning in Real-Time Applications 12. Choosing the Best Algorithm for Your Application 13. Other Books You May Enjoy

Stemming

Stemming is a type of transformation that can be applied to a single word, though typically the stemming operation occurs right after tokenizing. Stemming after tokenizing is so common that natural.js offers a tokenizeAndStem convenience method that can be attached to the String class prototype.

Specifically, stemming reduces a word to its root form, for instance by transforming running to run. Stemming your text after tokenizing can significantly reduce the entropy of your dataset, because it essentially de-duplicates words with similar meanings but different tenses or inflections. Your algorithm will not need to learn the words run, runs, running, and runnings separately, as they will all get transformed into run.

The most popular stemming algorithm, the Porter stemmer, is a heuristic algorithm that defines a number of staged rules for the transformation. But, in essence...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime