Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Convolutional Neural Networks with TensorFlow

You're reading from   Hands-On Convolutional Neural Networks with TensorFlow Solve computer vision problems with modeling in TensorFlow and Python

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789130331
Length 272 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
 Araujo Araujo
Author Profile Icon Araujo
Araujo
 Zafar Zafar
Author Profile Icon Zafar
Zafar
 Tzanidou Tzanidou
Author Profile Icon Tzanidou
Tzanidou
 Burton Burton
Author Profile Icon Burton
Burton
 Patel Patel
Author Profile Icon Patel
Patel
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Setup and Introduction to TensorFlow FREE CHAPTER 2. Deep Learning and Convolutional Neural Networks 3. Image Classification in TensorFlow 4. Object Detection and Segmentation 5. VGG, Inception Modules, Residuals, and MobileNets 6. Autoencoders, Variational Autoencoders, and Generative Adversarial Networks 7. Transfer Learning 8. Machine Learning Best Practices and Troubleshooting 9. Training at Scale 10. References 11. Other Books You May Enjoy

Data Preparation


The backbone of all Machine Learning algorithms is the data. Everything a machine learning algorithm learns is from the data. Therefore it is critical to provide the correct data to the algorithm which is representative of the problem statement. As seen already, deep learning in particular requires large amounts of data for training models. We can sometimes say that a certain amount of data is enough for a problem, however there is never enough! More is better. The complexity of the model that is able to be trained correctly is directly proportional to the amount of data on which it is trained. Limited data will put an upper limit on the choice of model architecture for the problem. When considering the amount of data available, it is also worth noting that a portion of this will also need to be used for validation and testing purposes.

The following section will now discuss the data partitioning and its importance on the progress of any machine learning task.

Split of Train...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Visually different images