Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-on Machine Learning with JavaScript

You're reading from   Hands-on Machine Learning with JavaScript Solve complex computational web problems using machine learning

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788998246
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Burak Kanber Burak Kanber
Author Profile Icon Burak Kanber
Burak Kanber
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Exploring the Potential of JavaScript FREE CHAPTER 2. Data Exploration 3. Tour of Machine Learning Algorithms 4. Grouping with Clustering Algorithms 5. Classification Algorithms 6. Association Rule Algorithms 7. Forecasting with Regression Algorithms 8. Artificial Neural Network Algorithms 9. Deep Neural Networks 10. Natural Language Processing in Practice 11. Using Machine Learning in Real-Time Applications 12. Choosing the Best Algorithm for Your Application 13. Other Books You May Enjoy

Data pipelines

When developing a production ML system, it's not likely that you will have the training data handed to you in a ready-to-process format. Production ML systems are typically part of larger application systems, and the data that you use will probably originate from several different sources. The training set for an ML algorithm may be a subset of your larger database, combined with images hosted on a Content Delivery Network (CDN) and event data from an Elasticsearch server. In our examples, we have been given an isolated training set, but in the real world we will need to generate the training set in an automated and repeatable manner.

The process of ushering data through various stages of a life cycle is called data pipelining. Data pipelining may include data selectors that run SQL or Elasticsearch queries for objects, event subscriptions which allow data...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime