Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Building Neo4j-Powered Applications with LLMs

You're reading from   Building Neo4j-Powered Applications with LLMs Create LLM-driven search and recommendations applications with Haystack, LangChain4j, and Spring AI

Arrow left icon
Product type Paperback
Published in Jun 2025
Publisher Packt
ISBN-13 9781836206231
Length 312 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Ravindranatha Anthapu Ravindranatha Anthapu
Author Profile Icon Ravindranatha Anthapu
Ravindranatha Anthapu
Siddhant Agarwal Siddhant Agarwal
Author Profile Icon Siddhant Agarwal
Siddhant Agarwal
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part: 1 Introducing RAG and Knowledge Graphs for LLM Grounding 2. Introducing LLMs, RAGs, and Neo4j Knowledge Graphs FREE CHAPTER 3. Demystifying RAG 4. Building a Foundational Understanding of Knowledge Graph for Intelligent Applications 5. Part 2: Integrating Haystack with Neo4j: A Practical Guide to Building AI-Powered Search 6. Building Your Neo4j Graph with Movies Dataset 7. Implementing Powerful Search Functionalities with Neo4j and Haystack 8. Exploring Advanced Knowledge Graph Capabilities with Neo4j 9. Part 3: Building an Intelligent Recommendation System with Neo4j, Spring AI, and LangChain4j 10. Introducing the Neo4j Spring AI and LangChain4j Frameworks for Building Recommendation Systems 11. Constructing a Recommendation Graph with H&M Personalization Dataset 12. Integrating LangChain4j and Spring AI with Neo4j 13. Creating an Intelligent Recommendation System 14. Part 4: Deploying Your GenAI Application in the Cloud 15. Choosing the Right Cloud Platform for GenAI Applications 16. Deploying Your Application on the Google Cloud 17. Epilogue 18. Other Books You May Enjoy
19. Index

Introducing Neo4j’s LangChain4j and Spring AI frameworks

To build intelligent applications, we can utilize multiple frameworks available around Neo4j. For the specific use case of intelligent recommendation systems, we will take a look at the Java frameworks Spring AI and LangChain4j.

LangChain4j

LangChain4j (https://github.com/langchain4j/) is a Java framework inspired by the popular Python LangChain framework to build LLM applications in Java. Its goal is to simplify integrating LLM APIs into Java applications. Toward that, it builds an API that is a blend of LangChain, Haystack, LlamaIndex, and other concepts and adds its own flavor to build complex applications. This is how it achieves these objectives.

The following list helps us understand how it achieves these objectives:

  • Unified APIs: All the LLM providers, such as Open AI and Google Gemini, have their own proprietary APIs to build applications. Vector stores such as Neo4j, Pinecone, and Milvus...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Visually different images