Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Convolutional Neural Networks with TensorFlow

You're reading from   Hands-On Convolutional Neural Networks with TensorFlow Solve computer vision problems with modeling in TensorFlow and Python

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789130331
Length 272 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
Richard Burton Richard Burton
Author Profile Icon Richard Burton
Richard Burton
Giounona Tzanidou Giounona Tzanidou
Author Profile Icon Giounona Tzanidou
Giounona Tzanidou
Iffat Zafar Iffat Zafar
Author Profile Icon Iffat Zafar
Iffat Zafar
Leonardo Araujo Leonardo Araujo
Author Profile Icon Leonardo Araujo
Leonardo Araujo
Nimesh Patel Nimesh Patel
Author Profile Icon Nimesh Patel
Nimesh Patel
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Setup and Introduction to TensorFlow FREE CHAPTER 2. Deep Learning and Convolutional Neural Networks 3. Image Classification in TensorFlow 4. Object Detection and Segmentation 5. VGG, Inception Modules, Residuals, and MobileNets 6. Autoencoders, Variational Autoencoders, and Generative Adversarial Networks 7. Transfer Learning 8. Machine Learning Best Practices and Troubleshooting 9. Training at Scale 10. References 11. Other Books You May Enjoy

CNN model architecture

The crucial part of an image classification model is its CNN layers. These layers will be responsible for extracting features from image data. The output of these CNN layers will be a feature vector, which like before, we can use as input for the classifier of our choice. For many CNN models, the classifier will be just a fully connected layer attached to the output of our CNN. As shown in Chapter 1Setup and Introduction to TensorFlow, our linear classifier is just a fully connected layer; this is exactly the case here, except that the size and input to the layer will be different.

It is important to note that at its core, the CNN architecture used in classification or a regression problem such as localization (or any other problems that use images for that matter) would be the same. The only real difference will be what happens after the CNN layers...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime