Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Embedded Linux Development

You're reading from   Mastering Embedded Linux Development Craft fast and reliable embedded solutions with Linux 6.6 and The Yocto Project 5.0 (Scarthgap)

Arrow left icon
Product type Paperback
Published in May 2025
Publisher Packt
ISBN-13 9781803232591
Length 710 pages
Edition 4th Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Frank Vasquez Frank Vasquez
Author Profile Icon Frank Vasquez
Frank Vasquez
Chris Simmonds Chris Simmonds
Author Profile Icon Chris Simmonds
Chris Simmonds
Arrow right icon
View More author details
Toc

Table of Contents (28) Chapters Close

Preface 1. Part 1: Elements of Embedded Linux
2. Starting Out FREE CHAPTER 3. Learning about Toolchains 4. All about Bootloaders 5. Configuring and Building the Kernel 6. Building a Root Filesystem 7. Part 2: Building Embedded Linux Images
8. Selecting a Build System 9. Developing with Yocto 10. Yocto under the Hood 11. Part 3: System Architecture and Design Decisions
12. Creating a Storage Strategy 13. Updating Software in the Field 14. Interfacing with Device Drivers 15. Prototyping with Add-On Boards 16. Starting Up – The init Program 17. Managing Power 18. Part 4: Developing Applications
19. Packaging Python 20. Deploying Container Images 21. Learning about Processes and Threads 22. Managing Memory 23. Part 5: Debugging and Optimizing Performance
24. Debugging with GDB 25. Profiling and Tracing 26. Real-Time Programming 27. Index

Running out of memory

The standard memory allocation policy is to overcommit, which means that the kernel will allow more memory to be allocated by applications than there is physical memory. Most of the time, this works fine because it is common for applications to request more memory than they really need. This also helps in the implementation of fork(2): it is safe to make a copy of a large program because the pages of memory are shared with the copy-on-write flag set. In the majority of cases, fork is followed by an exec function call, which unshares the memory and then loads a new program.

However, there is always the possibility that a particular workload will cause a group of processes to try to cash in on the allocations they have been promised simultaneously and so demand more than there really is. This is an out-of-memory, or OOM, situation. At this point, there is no other alternative but to kill off processes until the problem goes away. This is the job of the out...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime