Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Convolutional Neural Networks with TensorFlow

You're reading from   Hands-On Convolutional Neural Networks with TensorFlow Solve computer vision problems with modeling in TensorFlow and Python

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781789130331
Length 272 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (5):
Arrow left icon
 Araujo Araujo
Author Profile Icon Araujo
Araujo
 Zafar Zafar
Author Profile Icon Zafar
Zafar
 Tzanidou Tzanidou
Author Profile Icon Tzanidou
Tzanidou
 Burton Burton
Author Profile Icon Burton
Burton
 Patel Patel
Author Profile Icon Patel
Patel
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Setup and Introduction to TensorFlow FREE CHAPTER 2. Deep Learning and Convolutional Neural Networks 3. Image Classification in TensorFlow 4. Object Detection and Segmentation 5. VGG, Inception Modules, Residuals, and MobileNets 6. Autoencoders, Variational Autoencoders, and Generative Adversarial Networks 7. Transfer Learning 8. Machine Learning Best Practices and Troubleshooting 9. Training at Scale 10. References 11. Other Books You May Enjoy

What this book covers

Chapter 1, Setup and Introduction to Tensorflow, covers the setting up and installation of TensorFlow along with writing a simple Tensorflow model for machine learning.

Chapter 2, Deep Learning and Convolutional Neural Networks, introduces you to machine learning, and artificial intelligence as well as artificial neural networks and how to train them. It also covers CNNs and how to use TensorFlow to train your own CNN.

Chapter 3, Image Classification in Tensorflowtalks about building CNN models and how to train them for classifying the CIFAR10 dataset. It also looks at ways to help improve the quality of our trained model by talking about different methods of initialization and regularization.

Chapter 4, Object Detection and Segmentationteaches the basics of object localization, detection and segmentation and the most famous algorithms related to those topics.

Chapter 5, VGG, Inception Modules, Residuals, and MobileNets, introduces you to different convolutional neural network designs like VGGNet, GoggLeNet, and MobileNet.

Chapter 6, AutoEncoders, Variational Autoencoders, and Generative Adversarial Networks, introduces you to generative models, generative adversarial network, and different types of encoders. 

Chapter 7, Transfer Learning, covers the usage of transfer learning and implementing it in our own tasks.

Chapter 8, Machine Learning Best Practices and Troubleshooting, introduces us to preparing and splitting a dataset into subsets and performing meaningful tests. The chapter also talks about underfitting and overfitting along with the best practices for addressing them.

Chapter 9, Training at Scale, teaches you how to train TensorFlow models across multiple GPUs and machines. It also covers best practices for storing your data and feeding it to your model.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime