29回勉強会資料「PostgreSQLのリカバリ超入門」
See also http://www.interdb.jp/pgsql (Coming soon!)
初心者向け。PostgreSQLのWAL、CHECKPOINT、 オンラインバックアップの仕組み解説。
これを見たら、次は→ http://www.slideshare.net/satock/29shikumi-backup
2011年10月19~21日に開催された「INSIGHT OUT 2011」のセッション「PostgreSQLアーキテクチャ入門」の講演資料です。
「INSIGHT OUT 2011」の詳細については、以下を参照ください。
http://www.insight-tec.com/insight-out-2011.html
2011年10月19~21日に開催された「INSIGHT OUT 2011」のセッション「PostgreSQLアーキテクチャ入門」の講演資料です。
「INSIGHT OUT 2011」の詳細については、以下を参照ください。
http://www.insight-tec.com/insight-out-2011.html
The document outlines a presentation by Anton Els on how to get started with Docker and Oracle Database, focusing on the fundamental concepts of Docker, including containers, images, and volumes. It discusses the differences between virtualization and containerization, highlighting the advantages of using Docker for efficient application deployment and management. Additionally, it provides practical examples of creating and running Docker images, along with the use of Docker Hub for managing images.
The document discusses advancements in partitioning performance in PostgreSQL 12 compared to PostgreSQL 11, highlighting improvements in both query planning and execution when handling thousands of partitions. It details benchmarking results showing significant performance enhancements in operations such as select, insert, and update, while also addressing encountered issues and solutions encountered during the migration from other database management systems. The findings emphasize that while PostgreSQL 12 can efficiently manage numerous partitions, effective query tuning remains essential for optimal performance.
The document provides an extensive overview of machine learning (ML) and its applications, particularly within the context of Facebook's operations and tools. It describes various ML use cases, such as spam filtering, recommendation systems, and image recognition, while highlighting the importance of data preparation and execution frameworks like Oracle's Advanced Analytics and Facebook's Fblearner. Additionally, it touches on the integration of different ML frameworks, emphasizing the collaborative development of PyTorch and Caffe2 for optimized performance in both research and production environments.
SQL Server 2017でLinuxに対応し、その延長線でDocker対応やKubernetesによる可用性構成が組めるようになりました。そしてリリースを間近に控えたSQL Server 2019ではKubernetesを活用したBig Data Cluster機能の提供が予定されており、コンテナの活用範囲はさらに広がっています。
本セッションではこれからSQL Serverコンテナに触れていくための基礎知識と実際に触れてみるための手順やサンプルをお届けします。