SlideShare a Scribd company logo
5
Most read
13
Most read
15
Most read
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-1
Chap. 9 Pipeline and Vector Processing
9-1 Parallel Processing
 Simultaneous data processing tasks for the purpose of increasing the
computational speed
 Perform concurrent data processing to achieve faster execution time
 Multiple Functional Unit : Fig. 9-1
Separate the execution unit into eight functional units operating in parallel
 Computer Architectural Classification
Data-Instruction Stream : Flynn
Serial versus Parallel Processing : Feng
Parallelism and Pipelining : Händler
 Flynn’s Classification
1) SISD (Single Instruction - Single Data stream)
» for practical purpose: only one processor is useful
» Example systems : Amdahl 470V/6, IBM 360/91
Parallel Processing Example
A d d e r - s u b t r a c t o r
In t e g e r m u lt ip ly
F lo a t in t - p o in t
a d d - s u b t r a c t
In c r e m e n t e r
S h if t u n it
L o g ic u n i t
F lo a t in t - p o in t
d iv i d e
F lo a t in t - p o in t
m u lt ip ly
P r o c e s s o r
r e g is t e r s
T o M e m o r y
=
C U M MP U
IS D S
IS
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-2
2) SIMD
(Single Instruction - Multiple Data stream)
» vector or array operations 에 적합한 형태
one vector operation includes many
operations on a data stream
» Example systems : CRAY -1, ILLIAC-IV
3) MISD
(Multiple Instruction - Single Data stream)
» Data Stream 에 Bottle neck 으로 인해
실제로 사용되지 않음
C U
P U 1
P U n
P U 2
M M 1
M M n
M M 2
D S 1
D S 2
D S n
IS
IS
S h a r e d m e m m o r y
P U 1
P U n
P U 2
D S
C U 1
C U n
C U 2
I S 1
I S 2
I S n
M M 1M M n M M 2
I S 1
I S 2
I S n
D S
S h a r e d m e m o r y
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-3
4) MIMD
(Multiple Instruction - Multiple Data stream)
» 대부분의 Multiprocessor
System 에서 사용됨
 Main topics in this Chapter
Pipeline processing : Sec. 9-2
» Arithmetic pipeline : Sec. 9-3
» Instruction pipeline : Sec. 9-4
Vector processing :adder/multiplier pipeline 이용 , Sec. 9-6
Array processing : 별도의 array processor 이용 , Sec. 9-7
» Attached array processor : Fig. 9-14
» SIMD array processor : Fig. 9-15
Large vector, Matrices,
그리고 Array Data 계산
P U 1
P U n
P U 2
D S
C U 1
C U n
C U 2
I S 1
I S 2
I S n
IS 1
IS 2
IS n
M M 1
M M n
M M 2
S h a r e d m e m o r y
vv
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-4
9-2 Pipelining
 Pipelining 의 원리
Decomposing a sequential process into suboperations
Each subprocess is executed in a special dedicated segment concurrently
 Pipelining 의 예제 : Fig. 9-2
Multiply and add operation : ( for i = 1, 2, …, 7 )
3 개의 Suboperation Segment 로 분리
» 1) : Input Ai and Bi
» 2) : Multiply and input Ci
» 3) : Add Ci
Content of registers in pipeline example : Tab. 9-1
 General considerations
4 segment pipeline : Fig. 9-3
» S : Combinational circuit for Suboperation
» R : Register(intermediate results between the segments)
Space-time diagram : Fig. 9-4
» Show segment utilization as a function of time
Task : T1, T2, T3,…, T6
» Total operation performed going through all the segment
435
4,2*13
2,1
RRR
CiRRRR
BiRAiR
+←
←←
←←
CiBiAi +*
Segment
versus
clock-cycle
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-5
 Speedup S : Nonpipeline / Pipeline
S = n • tn / ( k + n - 1 ) • tp = 6 • 6 tn / ( 4 + 6 - 1 ) • tp = 36 tn / 9 tn = 4
» n : task number ( 6 )
» tn : time to complete each task in nonpipeline ( 6 cycle times = 6 tp)
» tp : clock cycle time ( 1 clock cycle )
» k : segment number ( 4 )
If n→ ∞ 이면 , S = tn / tp
한 개의 task 를 처리하는 시간이 같을 때
즉 , nonpipeline ( tn ) = pipeline ( k • tp )
이라고 가정하면 ,
S = tn / tp = k • tp / tp = k
따라서 이론적으로 k 배 (segment 개수 )
만큼 처리 속도가 향상된다 .
 Pipeline 에는 Arithmetic Pipeline(Sec. 9-3) 과 Instruction Pipeline(Sec. 9-4) 이 있
다
Sec. 9-3 Arithmetic Pipeline
 Floating-point Adder Pipeline Example : Fig. 9-6
Add / Subtract two normalized floating-point binary number
» X = A x 2a
= 0.9504 x 103
1 8765432 9
1
4
3
2
C lo c k c y c le s
T 1 T 6T 3 T 5T 2 T 4
T 1 T 6T 3 T 5T 2 T 4
T 1 T 6T 3 T 5T 2 T 4
T 1 T 6T 3 T 5T 2 T 4
Segment
Pipeline 에서의 처리 시간 = 9 clock cycles
k + n - 1 ≈ n
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-6
4 segments suboperations
» 1) Compare exponents by subtraction :
3 - 2 = 1
X = 0.9504 x 103
Y = 0.8200 x 102
» 2) Align mantissas
X = 0.9504 x 103
Y = 0.08200 x 103
» 3) Add mantissas
Z = 1.0324 x 103
» 4) Normalize result
Z = 0.1324 x 104
R
C o m p a r e
e x p o n e n t s
b y s u b t r a c t io n
R
C h o o s e e x p o n e n t A lig n m a n t is s a s
R
A d d o r s u b t r a c t
m a n t is s a s
R
N o r m a liz e
r e s u lt
R
R
A d ju s t
e x p o n e n t
R
R
a b BA
E x p o n e n t s M a n t is s a s
D if f e r e n c e
S e g m e n t 1 :
S e g m e n t 4 :
S e g m e n t 3 :
S e g m e n t 2 :
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-7
9-4 Instruction Pipeline
 Instruction Cycle
1) Fetch the instruction from memory
2) Decode the instruction
3) Calculate the effective address
4) Fetch the operands from memory
5) Execute the instruction
6) Store the result in the proper place
 Example : Four-segment Instruction Pipeline
Four-segment CPU pipeline : Fig. 9-7
» 1) FI : Instruction Fetch
» 2) DA : Decode Instruction & calculate EA
» 3) FO : Operand Fetch
» 4) EX : Execution
Timing of Instruction Pipeline : Fig. 9-8
» Instruction 3 에서 Branch 명령 실행
S e g m e n t 1 :
S e g m e n t 4 :
S e g m e n t 3 :
S e g m e n t 2 :
F e t c h i n s t r u c t io n
f r o m m e m o r y
D e c o d e i n s t r u c t i o n
a n d c a l c u l a t e
e f f e c t i v e a d d r e s s
F e t c h o p e r a n d
f r o m m e m o r y
E x e c u t e in s t r u c t io n
B r a n c h ?
I n t e r r u p t ?
I n t e r r u p t
h a n d lin g
U p d a t e P C
E m p t y p i p e
1 32
1
4
3
2
7
6
5
87654 9 1 21 11 0 1 3
F I E XF OD A
F I E XF OD A
F I E XF OD A
F I E XF OD A
F I E XF OD A
F I E XF OD A
F I E XF OD A
F I
In s t r u c t io n :
( B r a n c h )
S t e p :
BranchNo Branch
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-8
 Pipeline Conflicts : 3 major difficulties
1) Resource conflicts
» memory access by two segments at the same time
2) Data dependency
» when an instruction depend on the result of a previous instruction, but this result is not
yet available
3) Branch difficulties
» branch and other instruction (interrupt, ret, ..) that change the value of PC
 Data Dependency 해결 방법
Hardware 적인 방법
» Hardware Interlock
previous instruction 의 결과가 나올 때 까지 Hardware 적인 Delay 를 강제 삽입
» Operand Forwarding
previous instruction 의 결과를 곧바로 ALU 로 전달 ( 정상적인 경우 , register 를 경유함 )
Software 적인 방법
» Delayed Load
previous instruction 의 결과가 나올 때 까지 No-operation instruction 을 삽입
 Handling of Branch Instructions
Prefetch target instruction
» Conditional branch 에서 branch target instruction ( 조건 맞음 ) 과 다음 instruction ( 조
건 안 맞음 ) 을 모두 fetch
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-9
Branch Target Buffer : BTB
» 1) Associative memory 를 이용하여 branch target address 이후에 몇 개에 instruction
을 미리 BTB 에 저장한다 .
» 2) 만약 branch instruction 이면 우선 BTB 를 검사하여 BTB 에 있으면 곧바로 가져온
다 (Cache 개념 도입 )
Loop Buffer
» 1) small very high speed register file (RAM) 을
이용하여 프로그램에서 loop 를 detect 한다 .
» 2) 만약 loop 가 발견되면 loop 프로그램 전체를
Loop Buffer 에 load 하여 실행하면 외부
메모리를 access 하지 않는다 .
Branch Prediction
» Branch 를 predict 하는 additional hardware logic 사용
 Delayed Branch 해결 방법
Fig. 9-8 에서와 같이 branch instruction 이
pipeline operation 을 지연시키는 경우
예제 : Fig. 9-10, p. 318, Sec. 9-5
» 1) No-operation instruction 삽입
» 2) Instruction Rearranging : Compiler 지원
1 32 654
1 . L o a d
4 . S u b t r a c t
3 . A d d
2 . In c r e m e n t
I EA
I EA
I EA
I EA
( a ) U s in g n o - o p e r a t io n in s t r u c t io n s
C lo c k c y c le s :
1 32 654
I EA
I EA
I EA
I EA
( b ) R e a r r a n g in g t h e in s t r u c t io n s
7
I EA
C lo c k c y c le s :
5 . B r a n c h t o X
8 . In s t r u c t io n in X
6 . N o - o p e r a t io n
7 . N o - o p e r a t io n
7 1 098
I EA
I EA
I EA
I EA
1 . L o a d
5 . S u b t r a c t
4 . A d d
2 . In c r e m e n t
3 . B r a n c h t o X
6 . In s t r u c t io n in X
8
I EA
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-10
9-5 RISC Pipeline
 RISC CPU 의 특징
Instruction Pipeline 을 이용함
Single-cycle instruction execution
Compiler support
 Example : Three-segment Instruction Pipeline
3 Suboperations Instruction Cycle
» 1) I : Instruction fetch
» 2) A : Instruction decoded and ALU operation
» 3) E : Transfer the output of ALU to a register,
memory, or PC
Delayed Load : Fig. 9-9(a)
» 3 번째 Instruction(ADD R1 + R3) 에서 Conflict 발생
4 번째 clock cycle 에서 2 번째 Instruction (LOAD R2)
실행과 동시에 3 번째 instruction 에서 R2 를 연산
» Delayed Load 해결 방법 : Fig. 9-9(b)
No-operation 삽입
Delayed Branch : Sec. 9-4 에서 이미 설명
1 32 654
1 . L o a d R 1
4 . S t o r e R 3
3 . A d d R 1 + R 2
2 . L o a d R 2
I EA
I EA
I EA
I EA
( a ) P ip e lin e t im in g w it h d a t a c o n f lic t
1 32 654
1 . L o a d R 1
4 . A d d R 1 + R 2
2 . L o a d R 2
I EA
I EA
I EA
I EA
( b ) P ip e lin e t im in g w it h d e la y e d lo a d
5 . S t o r e R 3
3 . N o - o p e r a t io n
7
I EA
C lo c k c y c le s :
C lo c k c y c le s :
Conflict 발생
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-11
9-6 Vector Processing
 Science and Engineering Applications
Long-range weather forecasting, Petroleum explorations, Seismic data analysis,
Medical diagnosis, Aerodynamics and space flight simulations, Artificial
intelligence and expert systems, Mapping the human genome, Image processing
 Vector Operations
Arithmetic operations on large arrays of numbers
Conventional scalar processor
» Machine language
Vector processor
» Single vector instruction
Initialize I = 0
20 Read A(I)
Read B(I)
Store C(I) = A(I) + B(I)
Increment I = I + 1
If I ≤ 100 go to 20
Continue
» Fortran language
DO 20 I = 1, 100
20 C(I) = A(I) + B(I)
C(1:100) = A(1:100) + B(1:100)
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-12
 Vector Instruction Format : Fig. 9-11
ADD A B C 100
 Matrix Multiplication
3 x 3 matrices multiplication : n2
= 9 inner product
» : 이와 같은 inner product 가 9 개
Cumulative multiply-add operation : n3
= 27 multiply-add
» : 이와 같은 multiply-add 가 3 개
따라서 9 X 3 multiply-add = 27
O p e r a t io n
c o d e
B a s e a d d r e s s
s o u r c e 1
B a s e a d d r e s s
s o u r c e 2
B a s e a d d r e s s
d e s t in a t io n
V e c t o r
le n g t h










=










×










333231
232221
131211
333231
232221
131211
333231
232221
131211
ccc
ccc
ccc
bbb
bbb
bbb
aaa
aaa
aaa
31132112111111 bababac ++=
bacc ×+=
3113211211111111 bababacc +++=
    
C11 의 초기값 = 0
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-13
 Pipeline for calculating an inner product : Fig. 9-12
Floating point multiplier pipeline : 4 segment
Floating point adder pipeline : 4 segment
예제 )
» after 1st clock input
» after 8th clock input
» Four section summation
kk BABABABAC ++++= 332211
S o u r c e
A
S o u r c e
B
M u lt ip lie r
p ip e lin e
A d d e r
p ip e lin e
» after 4th clock input
A1B1
S o u r c e
A
S o u r c e
B
M u lt ip lie r
p ip e lin e
A d d e r
p ip e lin e
A4B4 A3B3 A2B2 A1B1
S o u r c e
A
S o u r c e
B
M u lt ip lie r
p ip e lin e
A d d e r
p ip e lin e
S o u r c e
A
S o u r c e
B
M u lt ip lie r
p ip e lin e
A d d e r
p ip e lin e
» after 9th, 10th, 11th ,...
A8B8 A7B7 A6B6 A5B5 A4B4 A3B3 A2B2 A1B1 A8B8 A7B7 A6B6 A5B5 A4B4 A3B3 A2B2 A1B1
5511 BABA +
, , ,  
6622 BABA +




+++++
+++++
+++++
++++=
161612128844
151511117733
141410106622
1313995511
BABABABA
BABABABA
BABABABA
BABABABAC
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-14
 Memory Interleaving : Fig. 9-13
Simultaneous access to memory from two or
more source using one memory bus system
AR 의 하위 2 bit 를 사용하여 4 개중 1 개의
memory module 선택
예제 ) Even / Odd Address Memory Access
A R
M e m o r y
a r r a y
D R
A R
M e m o r y
a r r a y
D R
A R
M e m o r y
a r r a y
D R
A R
M e m o r y
a r r a y
D R
A d d r e s s b u s
D a t a b u s
 Supercomputer
Supercomputer = Vector Instruction + Pipelined floating-point arithmetic
Performance Evaluation Index
» MIPS : Million Instruction Per Second
» FLOPS : Floating-point Operation Per Second
megaflops : 106
, gigaflops : 109
Cray supercomputer : Cray Research
» Clay-1 : 80 megaflops, 4 million 64 bit words memory
» Clay-2 : 12 times more powerful than the clay-1
VP supercomputer : Fujitsu
» VP-200 : 300 megaflops, 32 million memory, 83 vector instruction, 195 scalar
instruction
» VP-2600 : 5 gigaflops
Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing
9-15
9-7 Array Processors
 Performs computations on large arrays of data
 Array Processing
Attached array processor : Fig. 9-14
» Auxiliary processor attached to a general purpose computer
SIMD array processor : Fig. 9-15
» Computer with multiple processing units operating in parallel
Vector 계산 C = A + B 에서 ci = ai + bi 를
각각의 PEi 에서 동시에 실행
Vector processing : Adder/Multiplier pipeline 이용
Array processing : 별도의 array processor 이용
G e n e r a l- p u r p o s e
c o m p u t e r
In p u t - O u t p u t
in t e r f a c e
A t t a c h e d a r r a y
P r o c e s s o r
M a in m e m o r y L o c a l m e m o r y
H ig h - s p e e d m e m o r y t o -
m e m o r y b u s
P E 1
P E 3
P E 2
M 1
M 3
M 2
P E n M n
M a s t e r c o n t r o l
u n it
M a i n m e m o r y

More Related Content

PPT
Cache coherence
PPTX
Unit 6 inter processor communication and synchronization
PDF
Basic Computer Organization and Design
PPTX
Instruction Set Architecture
PPT
Register transfer & microoperations moris mano ch 04
PPTX
Computer Organisation & Architecture (chapter 1)
PDF
COMPUTER ORGANIZATION NOTES Unit 7
DOCX
Parallel computing persentation
Cache coherence
Unit 6 inter processor communication and synchronization
Basic Computer Organization and Design
Instruction Set Architecture
Register transfer & microoperations moris mano ch 04
Computer Organisation & Architecture (chapter 1)
COMPUTER ORGANIZATION NOTES Unit 7
Parallel computing persentation

What's hot (20)

PPT
Pipeline hazard
PPTX
Instruction codes
PDF
8085 branching instruction
PPT
Parallel processing
PPT
Memory Reference instruction
PPT
04 cache memory.ppt 1
PPTX
Shuffle exchange networks
PPT
Types of instructions
PPT
Unit 3-pipelining & vector processing
PPTX
Lecture 37
PPTX
Multiprocessor
PDF
Pipelining and ILP (Instruction Level Parallelism)
PPT
Pipelining in computer architecture
PPTX
Memory interleaving
PPTX
PPTX
instruction format and addressing modes
PPTX
Cache Memory
PPS
Cache memory
PPTX
Operating system components
PDF
Introduction to Bus | Address, Data, Control Bus
Pipeline hazard
Instruction codes
8085 branching instruction
Parallel processing
Memory Reference instruction
04 cache memory.ppt 1
Shuffle exchange networks
Types of instructions
Unit 3-pipelining & vector processing
Lecture 37
Multiprocessor
Pipelining and ILP (Instruction Level Parallelism)
Pipelining in computer architecture
Memory interleaving
instruction format and addressing modes
Cache Memory
Cache memory
Operating system components
Introduction to Bus | Address, Data, Control Bus
Ad

Viewers also liked (12)

PPT
Memory Organization
PPT
Prim Algorithm and kruskal algorithm
PPT
Cluster analysis
PPT
input output Organization
PPT
Tiny os
DOCX
Structure and Typedef
DOCX
Union from C and Data Strutures
PPT
Data retrieval in sensor networks
DOC
c and data structures first unit notes (jntuh syllabus)
PPTX
Branch and bound
PPT
Classification and prediction
PPT
Association rule mining
Memory Organization
Prim Algorithm and kruskal algorithm
Cluster analysis
input output Organization
Tiny os
Structure and Typedef
Union from C and Data Strutures
Data retrieval in sensor networks
c and data structures first unit notes (jntuh syllabus)
Branch and bound
Classification and prediction
Association rule mining
Ad

Similar to pipeline and vector processing (20)

PPTX
Pipelining And Vector Processing
PDF
CS304PC:Computer Organization and Architecture Session 33 demo 1 ppt.pdf
PDF
Parallel Processing Techniques Pipelining
PPT
Pipelining (COA)okokokokokokokokokokok.ppt
PPT
Computer_Architecture_3rd_Edition_by_Moris_Mano_Ch_09.ppt
PPT
Unit 6 of OS in computer science and engineering
PDF
pipelining ppt.pdf
PPTX
Pipelining in Computer System Achitecture
PDF
“Efficiently Map AI and Vision Applications onto Multi-core AI Processors Usi...
PPT
PPTX
Computer architecture lecturer powerpint presentation
PPTX
Core pipelining
PPTX
BTCS501_MM_Ch9.pptx
PPT
Computer Organozation
PPTX
Dpdk applications
PPT
Short.course.introduction.to.vhdl
DOC
POLITEKNIK MALAYSIA
PDF
A Comparative Study of PID and Fuzzy Controller for Speed Control of Brushles...
PDF
Dsp lab manual 15 11-2016
PPT
2007 Tidc India Profiling
Pipelining And Vector Processing
CS304PC:Computer Organization and Architecture Session 33 demo 1 ppt.pdf
Parallel Processing Techniques Pipelining
Pipelining (COA)okokokokokokokokokokok.ppt
Computer_Architecture_3rd_Edition_by_Moris_Mano_Ch_09.ppt
Unit 6 of OS in computer science and engineering
pipelining ppt.pdf
Pipelining in Computer System Achitecture
“Efficiently Map AI and Vision Applications onto Multi-core AI Processors Usi...
Computer architecture lecturer powerpint presentation
Core pipelining
BTCS501_MM_Ch9.pptx
Computer Organozation
Dpdk applications
Short.course.introduction.to.vhdl
POLITEKNIK MALAYSIA
A Comparative Study of PID and Fuzzy Controller for Speed Control of Brushles...
Dsp lab manual 15 11-2016
2007 Tidc India Profiling

More from Acad (15)

PPTX
routing alg.pptx
PPTX
Network Layer design Issues.pptx
PPTX
Computer Science basics
DOCX
Union
DOCX
Stacks
DOCX
Str
DOC
Functions
DOCX
File
DOCX
Ds
DOCX
Dma
PDF
Botnet detection by Imitation method
PDF
Bot net detection by using ssl encryption
PDF
An Aggregate Location Monitoring System Of Privacy Preserving In Authenticati...
PDF
Literature survey on peer to peer botnets
PPT
multi processors
routing alg.pptx
Network Layer design Issues.pptx
Computer Science basics
Union
Stacks
Str
Functions
File
Ds
Dma
Botnet detection by Imitation method
Bot net detection by using ssl encryption
An Aggregate Location Monitoring System Of Privacy Preserving In Authenticati...
Literature survey on peer to peer botnets
multi processors

Recently uploaded (20)

PDF
Complications of Minimal Access Surgery at WLH
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Pre independence Education in Inndia.pdf
PPTX
Institutional Correction lecture only . . .
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PDF
Basic Mud Logging Guide for educational purpose
PDF
Insiders guide to clinical Medicine.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
Complications of Minimal Access Surgery at WLH
FourierSeries-QuestionsWithAnswers(Part-A).pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Final Presentation General Medicine 03-08-2024.pptx
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Cell Types and Its function , kingdom of life
Supply Chain Operations Speaking Notes -ICLT Program
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pre independence Education in Inndia.pdf
Institutional Correction lecture only . . .
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
Basic Mud Logging Guide for educational purpose
Insiders guide to clinical Medicine.pdf
TR - Agricultural Crops Production NC III.pdf

pipeline and vector processing

  • 1. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-1 Chap. 9 Pipeline and Vector Processing 9-1 Parallel Processing  Simultaneous data processing tasks for the purpose of increasing the computational speed  Perform concurrent data processing to achieve faster execution time  Multiple Functional Unit : Fig. 9-1 Separate the execution unit into eight functional units operating in parallel  Computer Architectural Classification Data-Instruction Stream : Flynn Serial versus Parallel Processing : Feng Parallelism and Pipelining : Händler  Flynn’s Classification 1) SISD (Single Instruction - Single Data stream) » for practical purpose: only one processor is useful » Example systems : Amdahl 470V/6, IBM 360/91 Parallel Processing Example A d d e r - s u b t r a c t o r In t e g e r m u lt ip ly F lo a t in t - p o in t a d d - s u b t r a c t In c r e m e n t e r S h if t u n it L o g ic u n i t F lo a t in t - p o in t d iv i d e F lo a t in t - p o in t m u lt ip ly P r o c e s s o r r e g is t e r s T o M e m o r y = C U M MP U IS D S IS
  • 2. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-2 2) SIMD (Single Instruction - Multiple Data stream) » vector or array operations 에 적합한 형태 one vector operation includes many operations on a data stream » Example systems : CRAY -1, ILLIAC-IV 3) MISD (Multiple Instruction - Single Data stream) » Data Stream 에 Bottle neck 으로 인해 실제로 사용되지 않음 C U P U 1 P U n P U 2 M M 1 M M n M M 2 D S 1 D S 2 D S n IS IS S h a r e d m e m m o r y P U 1 P U n P U 2 D S C U 1 C U n C U 2 I S 1 I S 2 I S n M M 1M M n M M 2 I S 1 I S 2 I S n D S S h a r e d m e m o r y
  • 3. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-3 4) MIMD (Multiple Instruction - Multiple Data stream) » 대부분의 Multiprocessor System 에서 사용됨  Main topics in this Chapter Pipeline processing : Sec. 9-2 » Arithmetic pipeline : Sec. 9-3 » Instruction pipeline : Sec. 9-4 Vector processing :adder/multiplier pipeline 이용 , Sec. 9-6 Array processing : 별도의 array processor 이용 , Sec. 9-7 » Attached array processor : Fig. 9-14 » SIMD array processor : Fig. 9-15 Large vector, Matrices, 그리고 Array Data 계산 P U 1 P U n P U 2 D S C U 1 C U n C U 2 I S 1 I S 2 I S n IS 1 IS 2 IS n M M 1 M M n M M 2 S h a r e d m e m o r y vv
  • 4. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-4 9-2 Pipelining  Pipelining 의 원리 Decomposing a sequential process into suboperations Each subprocess is executed in a special dedicated segment concurrently  Pipelining 의 예제 : Fig. 9-2 Multiply and add operation : ( for i = 1, 2, …, 7 ) 3 개의 Suboperation Segment 로 분리 » 1) : Input Ai and Bi » 2) : Multiply and input Ci » 3) : Add Ci Content of registers in pipeline example : Tab. 9-1  General considerations 4 segment pipeline : Fig. 9-3 » S : Combinational circuit for Suboperation » R : Register(intermediate results between the segments) Space-time diagram : Fig. 9-4 » Show segment utilization as a function of time Task : T1, T2, T3,…, T6 » Total operation performed going through all the segment 435 4,2*13 2,1 RRR CiRRRR BiRAiR +← ←← ←← CiBiAi +* Segment versus clock-cycle
  • 5. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-5  Speedup S : Nonpipeline / Pipeline S = n • tn / ( k + n - 1 ) • tp = 6 • 6 tn / ( 4 + 6 - 1 ) • tp = 36 tn / 9 tn = 4 » n : task number ( 6 ) » tn : time to complete each task in nonpipeline ( 6 cycle times = 6 tp) » tp : clock cycle time ( 1 clock cycle ) » k : segment number ( 4 ) If n→ ∞ 이면 , S = tn / tp 한 개의 task 를 처리하는 시간이 같을 때 즉 , nonpipeline ( tn ) = pipeline ( k • tp ) 이라고 가정하면 , S = tn / tp = k • tp / tp = k 따라서 이론적으로 k 배 (segment 개수 ) 만큼 처리 속도가 향상된다 .  Pipeline 에는 Arithmetic Pipeline(Sec. 9-3) 과 Instruction Pipeline(Sec. 9-4) 이 있 다 Sec. 9-3 Arithmetic Pipeline  Floating-point Adder Pipeline Example : Fig. 9-6 Add / Subtract two normalized floating-point binary number » X = A x 2a = 0.9504 x 103 1 8765432 9 1 4 3 2 C lo c k c y c le s T 1 T 6T 3 T 5T 2 T 4 T 1 T 6T 3 T 5T 2 T 4 T 1 T 6T 3 T 5T 2 T 4 T 1 T 6T 3 T 5T 2 T 4 Segment Pipeline 에서의 처리 시간 = 9 clock cycles k + n - 1 ≈ n
  • 6. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-6 4 segments suboperations » 1) Compare exponents by subtraction : 3 - 2 = 1 X = 0.9504 x 103 Y = 0.8200 x 102 » 2) Align mantissas X = 0.9504 x 103 Y = 0.08200 x 103 » 3) Add mantissas Z = 1.0324 x 103 » 4) Normalize result Z = 0.1324 x 104 R C o m p a r e e x p o n e n t s b y s u b t r a c t io n R C h o o s e e x p o n e n t A lig n m a n t is s a s R A d d o r s u b t r a c t m a n t is s a s R N o r m a liz e r e s u lt R R A d ju s t e x p o n e n t R R a b BA E x p o n e n t s M a n t is s a s D if f e r e n c e S e g m e n t 1 : S e g m e n t 4 : S e g m e n t 3 : S e g m e n t 2 :
  • 7. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-7 9-4 Instruction Pipeline  Instruction Cycle 1) Fetch the instruction from memory 2) Decode the instruction 3) Calculate the effective address 4) Fetch the operands from memory 5) Execute the instruction 6) Store the result in the proper place  Example : Four-segment Instruction Pipeline Four-segment CPU pipeline : Fig. 9-7 » 1) FI : Instruction Fetch » 2) DA : Decode Instruction & calculate EA » 3) FO : Operand Fetch » 4) EX : Execution Timing of Instruction Pipeline : Fig. 9-8 » Instruction 3 에서 Branch 명령 실행 S e g m e n t 1 : S e g m e n t 4 : S e g m e n t 3 : S e g m e n t 2 : F e t c h i n s t r u c t io n f r o m m e m o r y D e c o d e i n s t r u c t i o n a n d c a l c u l a t e e f f e c t i v e a d d r e s s F e t c h o p e r a n d f r o m m e m o r y E x e c u t e in s t r u c t io n B r a n c h ? I n t e r r u p t ? I n t e r r u p t h a n d lin g U p d a t e P C E m p t y p i p e 1 32 1 4 3 2 7 6 5 87654 9 1 21 11 0 1 3 F I E XF OD A F I E XF OD A F I E XF OD A F I E XF OD A F I E XF OD A F I E XF OD A F I E XF OD A F I In s t r u c t io n : ( B r a n c h ) S t e p : BranchNo Branch
  • 8. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-8  Pipeline Conflicts : 3 major difficulties 1) Resource conflicts » memory access by two segments at the same time 2) Data dependency » when an instruction depend on the result of a previous instruction, but this result is not yet available 3) Branch difficulties » branch and other instruction (interrupt, ret, ..) that change the value of PC  Data Dependency 해결 방법 Hardware 적인 방법 » Hardware Interlock previous instruction 의 결과가 나올 때 까지 Hardware 적인 Delay 를 강제 삽입 » Operand Forwarding previous instruction 의 결과를 곧바로 ALU 로 전달 ( 정상적인 경우 , register 를 경유함 ) Software 적인 방법 » Delayed Load previous instruction 의 결과가 나올 때 까지 No-operation instruction 을 삽입  Handling of Branch Instructions Prefetch target instruction » Conditional branch 에서 branch target instruction ( 조건 맞음 ) 과 다음 instruction ( 조 건 안 맞음 ) 을 모두 fetch
  • 9. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-9 Branch Target Buffer : BTB » 1) Associative memory 를 이용하여 branch target address 이후에 몇 개에 instruction 을 미리 BTB 에 저장한다 . » 2) 만약 branch instruction 이면 우선 BTB 를 검사하여 BTB 에 있으면 곧바로 가져온 다 (Cache 개념 도입 ) Loop Buffer » 1) small very high speed register file (RAM) 을 이용하여 프로그램에서 loop 를 detect 한다 . » 2) 만약 loop 가 발견되면 loop 프로그램 전체를 Loop Buffer 에 load 하여 실행하면 외부 메모리를 access 하지 않는다 . Branch Prediction » Branch 를 predict 하는 additional hardware logic 사용  Delayed Branch 해결 방법 Fig. 9-8 에서와 같이 branch instruction 이 pipeline operation 을 지연시키는 경우 예제 : Fig. 9-10, p. 318, Sec. 9-5 » 1) No-operation instruction 삽입 » 2) Instruction Rearranging : Compiler 지원 1 32 654 1 . L o a d 4 . S u b t r a c t 3 . A d d 2 . In c r e m e n t I EA I EA I EA I EA ( a ) U s in g n o - o p e r a t io n in s t r u c t io n s C lo c k c y c le s : 1 32 654 I EA I EA I EA I EA ( b ) R e a r r a n g in g t h e in s t r u c t io n s 7 I EA C lo c k c y c le s : 5 . B r a n c h t o X 8 . In s t r u c t io n in X 6 . N o - o p e r a t io n 7 . N o - o p e r a t io n 7 1 098 I EA I EA I EA I EA 1 . L o a d 5 . S u b t r a c t 4 . A d d 2 . In c r e m e n t 3 . B r a n c h t o X 6 . In s t r u c t io n in X 8 I EA
  • 10. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-10 9-5 RISC Pipeline  RISC CPU 의 특징 Instruction Pipeline 을 이용함 Single-cycle instruction execution Compiler support  Example : Three-segment Instruction Pipeline 3 Suboperations Instruction Cycle » 1) I : Instruction fetch » 2) A : Instruction decoded and ALU operation » 3) E : Transfer the output of ALU to a register, memory, or PC Delayed Load : Fig. 9-9(a) » 3 번째 Instruction(ADD R1 + R3) 에서 Conflict 발생 4 번째 clock cycle 에서 2 번째 Instruction (LOAD R2) 실행과 동시에 3 번째 instruction 에서 R2 를 연산 » Delayed Load 해결 방법 : Fig. 9-9(b) No-operation 삽입 Delayed Branch : Sec. 9-4 에서 이미 설명 1 32 654 1 . L o a d R 1 4 . S t o r e R 3 3 . A d d R 1 + R 2 2 . L o a d R 2 I EA I EA I EA I EA ( a ) P ip e lin e t im in g w it h d a t a c o n f lic t 1 32 654 1 . L o a d R 1 4 . A d d R 1 + R 2 2 . L o a d R 2 I EA I EA I EA I EA ( b ) P ip e lin e t im in g w it h d e la y e d lo a d 5 . S t o r e R 3 3 . N o - o p e r a t io n 7 I EA C lo c k c y c le s : C lo c k c y c le s : Conflict 발생
  • 11. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-11 9-6 Vector Processing  Science and Engineering Applications Long-range weather forecasting, Petroleum explorations, Seismic data analysis, Medical diagnosis, Aerodynamics and space flight simulations, Artificial intelligence and expert systems, Mapping the human genome, Image processing  Vector Operations Arithmetic operations on large arrays of numbers Conventional scalar processor » Machine language Vector processor » Single vector instruction Initialize I = 0 20 Read A(I) Read B(I) Store C(I) = A(I) + B(I) Increment I = I + 1 If I ≤ 100 go to 20 Continue » Fortran language DO 20 I = 1, 100 20 C(I) = A(I) + B(I) C(1:100) = A(1:100) + B(1:100)
  • 12. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-12  Vector Instruction Format : Fig. 9-11 ADD A B C 100  Matrix Multiplication 3 x 3 matrices multiplication : n2 = 9 inner product » : 이와 같은 inner product 가 9 개 Cumulative multiply-add operation : n3 = 27 multiply-add » : 이와 같은 multiply-add 가 3 개 따라서 9 X 3 multiply-add = 27 O p e r a t io n c o d e B a s e a d d r e s s s o u r c e 1 B a s e a d d r e s s s o u r c e 2 B a s e a d d r e s s d e s t in a t io n V e c t o r le n g t h           =           ×           333231 232221 131211 333231 232221 131211 333231 232221 131211 ccc ccc ccc bbb bbb bbb aaa aaa aaa 31132112111111 bababac ++= bacc ×+= 3113211211111111 bababacc +++=      C11 의 초기값 = 0
  • 13. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-13  Pipeline for calculating an inner product : Fig. 9-12 Floating point multiplier pipeline : 4 segment Floating point adder pipeline : 4 segment 예제 ) » after 1st clock input » after 8th clock input » Four section summation kk BABABABAC ++++= 332211 S o u r c e A S o u r c e B M u lt ip lie r p ip e lin e A d d e r p ip e lin e » after 4th clock input A1B1 S o u r c e A S o u r c e B M u lt ip lie r p ip e lin e A d d e r p ip e lin e A4B4 A3B3 A2B2 A1B1 S o u r c e A S o u r c e B M u lt ip lie r p ip e lin e A d d e r p ip e lin e S o u r c e A S o u r c e B M u lt ip lie r p ip e lin e A d d e r p ip e lin e » after 9th, 10th, 11th ,... A8B8 A7B7 A6B6 A5B5 A4B4 A3B3 A2B2 A1B1 A8B8 A7B7 A6B6 A5B5 A4B4 A3B3 A2B2 A1B1 5511 BABA + , , ,   6622 BABA +     +++++ +++++ +++++ ++++= 161612128844 151511117733 141410106622 1313995511 BABABABA BABABABA BABABABA BABABABAC
  • 14. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-14  Memory Interleaving : Fig. 9-13 Simultaneous access to memory from two or more source using one memory bus system AR 의 하위 2 bit 를 사용하여 4 개중 1 개의 memory module 선택 예제 ) Even / Odd Address Memory Access A R M e m o r y a r r a y D R A R M e m o r y a r r a y D R A R M e m o r y a r r a y D R A R M e m o r y a r r a y D R A d d r e s s b u s D a t a b u s  Supercomputer Supercomputer = Vector Instruction + Pipelined floating-point arithmetic Performance Evaluation Index » MIPS : Million Instruction Per Second » FLOPS : Floating-point Operation Per Second megaflops : 106 , gigaflops : 109 Cray supercomputer : Cray Research » Clay-1 : 80 megaflops, 4 million 64 bit words memory » Clay-2 : 12 times more powerful than the clay-1 VP supercomputer : Fujitsu » VP-200 : 300 megaflops, 32 million memory, 83 vector instruction, 195 scalar instruction » VP-2600 : 5 gigaflops
  • 15. Computer System Architecture Dept. of Info. Of ComputerChap. 9 Pipeline and Vector ProcessingChap. 9 Pipeline and Vector Processing 9-15 9-7 Array Processors  Performs computations on large arrays of data  Array Processing Attached array processor : Fig. 9-14 » Auxiliary processor attached to a general purpose computer SIMD array processor : Fig. 9-15 » Computer with multiple processing units operating in parallel Vector 계산 C = A + B 에서 ci = ai + bi 를 각각의 PEi 에서 동시에 실행 Vector processing : Adder/Multiplier pipeline 이용 Array processing : 별도의 array processor 이용 G e n e r a l- p u r p o s e c o m p u t e r In p u t - O u t p u t in t e r f a c e A t t a c h e d a r r a y P r o c e s s o r M a in m e m o r y L o c a l m e m o r y H ig h - s p e e d m e m o r y t o - m e m o r y b u s P E 1 P E 3 P E 2 M 1 M 3 M 2 P E n M n M a s t e r c o n t r o l u n it M a i n m e m o r y