SlideShare a Scribd company logo
Linked Open Data
                   with Drupal

1 sprint
  st



             http://drupal.cat

Drupal.cat             November 10th, 2012   Citilab, Cornellá
Plan del sprint

    10h – 10h15: Introduction

    10h15 – 10h45: brainstorming

    10h45 – 11h: groups and tasks

    11h – 12h: sprint (data analysis)

    12h – 12h15: coffee break

    12h15 – 13h30: sprint (data importation)

    13h30 – 14h: Results and discussions
Introduction
Linked Open Data with Drupal
Summary of the previous session (04/10/12)
http://www.slideshare.net/emmanuel_jamin/linking-open-data-with-drupal



    - Open Data plaforms
                 •   Barcelona / Catalunya / Spain

    - Reuse Open Data to build rich web applications
                 •   Donde van mis impuestos, adopta una playa,
                     etc.

    - Many Drupal modules to reuse Open Data
                 •   RDFx, SPARQL, SPARQL views, etc.
E – LODrupal Hackathon
                      LOD hackathon
         General idea
                                                              Publish LOD



Datos.gob.es


                                  LOD Drupal
                                                            Build applications
 Datos.gen.cat                    Barcelona




     Datos.Bcn

                                                             LOD expertise
                 OD integration           LOD publication
                  1st Sprint               2nd Sprint
1 Sprint → 2 Objectives
Play with Open Data              Find ideas and define
  and Drupal                       what we want to do

- analyze different types of data - select interesting topics
   from Open Data Barcelona          according to the datasets
   and Catalunya

                                 - Build the ODCAT module and
- extract and import data           data.drupal.cat


- reuse and display imported     - build social applications
   data
Before importing Open Data
1. List the available data
           •   Cf. google doc

2. Analysis and evaluation of the datasets
           •   Quality, topic, etc.

3. Selection of the dataset to be imported
           •   Motivation, difficulty, etc.

4. List of the entities to be created
Steps to import Open Data
1. Create the Content type to fit with the data

2. Anticipate the fields type according to the reuse
  objectives
            •   For mapping, scheduling, etc.

3. Create the Feeds structure to match the data source
  and the Content Type fields

4. Execute the importation
            •   test and refine the data importation
Let's Go!

- Brainstorming (30 min)

- Groups and tasks (15 min)

- Sprint 1 → Data analysis (1h)

- Sprint 2 → Data importation (1h)

- Results and discussion (30 min)
Have Fun!!!

More Related Content

PDF
Drupal Day 2011 - Thinking spatially with your open data
KEY
When Drupal meets OpenData
PDF
Sylva (July 2012, CulturePlex Lab)
PPTX
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
ODP
State of the Semantic Web
PDF
Maximising (Re)Usability of Library metadata using Linked Data
PDF
Discovering python search engine
PDF
Getting started with ai for free devopsdays rdu
Drupal Day 2011 - Thinking spatially with your open data
When Drupal meets OpenData
Sylva (July 2012, CulturePlex Lab)
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
State of the Semantic Web
Maximising (Re)Usability of Library metadata using Linked Data
Discovering python search engine
Getting started with ai for free devopsdays rdu

What's hot (6)

PDF
Tue acosta tut_providing_linkeddata
PDF
Discovering python search engines
PPTX
The nature.com ontologies portal: nature.com/ontologies
PPT
Scratchpad 2, Virtual Research Environment: Project Update
PDF
The Nature.com ontologies portal - Linked Science 2015
PPTX
Big Linked Data - Creating Training Curricula
Tue acosta tut_providing_linkeddata
Discovering python search engines
The nature.com ontologies portal: nature.com/ontologies
Scratchpad 2, Virtual Research Environment: Project Update
The Nature.com ontologies portal - Linked Science 2015
Big Linked Data - Creating Training Curricula
Ad

Similar to Sprint linked open_data_with_drupal (20)

PDF
The Semantic Web and Drupal 7 - Loja 2013
PPT
Exploring the Semantic Web
PDF
Oak meeting 18/09/2014
PDF
What is New in W3C land?
PDF
Drupal and the Semantic Web - ESIP Webinar
PDF
Slides semantic web and Drupal 7 NYCCamp 2012
PPTX
Data Science at Scale by Sarah Guido
PDF
Using Oracle Big Data Discovey as a Data Scientist's Toolkit
PPTX
Semantics, rdf and drupal
PPTX
Data Day Seattle 2015: Sarah Guido
PDF
Introduction to Open Data and Data Science
PPTX
Linked Open Data (LOD) part 3
PDF
Let's do data research work: the creation of a portal with research informati...
PDF
Big_data_1674238705.ppt is a basic background
PDF
Minimizing the Complexities of Machine Learning with Data Virtualization
PDF
Drupal and the semantic web - SemTechBiz 2012
PDF
Thinking spatially with your open data
PPTX
Linked Data from a Digital Object Management System
PDF
Bootcamp Data Science using Cloudera
PPTX
Recommendations in Drupal (Drupal DevDays Barcelona 2012)
The Semantic Web and Drupal 7 - Loja 2013
Exploring the Semantic Web
Oak meeting 18/09/2014
What is New in W3C land?
Drupal and the Semantic Web - ESIP Webinar
Slides semantic web and Drupal 7 NYCCamp 2012
Data Science at Scale by Sarah Guido
Using Oracle Big Data Discovey as a Data Scientist's Toolkit
Semantics, rdf and drupal
Data Day Seattle 2015: Sarah Guido
Introduction to Open Data and Data Science
Linked Open Data (LOD) part 3
Let's do data research work: the creation of a portal with research informati...
Big_data_1674238705.ppt is a basic background
Minimizing the Complexities of Machine Learning with Data Virtualization
Drupal and the semantic web - SemTechBiz 2012
Thinking spatially with your open data
Linked Data from a Digital Object Management System
Bootcamp Data Science using Cloudera
Recommendations in Drupal (Drupal DevDays Barcelona 2012)
Ad

Sprint linked open_data_with_drupal

  • 1. Linked Open Data with Drupal 1 sprint st http://drupal.cat Drupal.cat November 10th, 2012 Citilab, Cornellá
  • 2. Plan del sprint  10h – 10h15: Introduction  10h15 – 10h45: brainstorming  10h45 – 11h: groups and tasks  11h – 12h: sprint (data analysis)  12h – 12h15: coffee break  12h15 – 13h30: sprint (data importation)  13h30 – 14h: Results and discussions
  • 4. Linked Open Data with Drupal Summary of the previous session (04/10/12) http://www.slideshare.net/emmanuel_jamin/linking-open-data-with-drupal - Open Data plaforms • Barcelona / Catalunya / Spain - Reuse Open Data to build rich web applications • Donde van mis impuestos, adopta una playa, etc. - Many Drupal modules to reuse Open Data • RDFx, SPARQL, SPARQL views, etc.
  • 5. E – LODrupal Hackathon LOD hackathon General idea Publish LOD Datos.gob.es LOD Drupal Build applications Datos.gen.cat Barcelona Datos.Bcn LOD expertise OD integration LOD publication 1st Sprint 2nd Sprint
  • 6. 1 Sprint → 2 Objectives Play with Open Data Find ideas and define and Drupal what we want to do - analyze different types of data - select interesting topics from Open Data Barcelona according to the datasets and Catalunya - Build the ODCAT module and - extract and import data data.drupal.cat - reuse and display imported - build social applications data
  • 7. Before importing Open Data 1. List the available data • Cf. google doc 2. Analysis and evaluation of the datasets • Quality, topic, etc. 3. Selection of the dataset to be imported • Motivation, difficulty, etc. 4. List of the entities to be created
  • 8. Steps to import Open Data 1. Create the Content type to fit with the data 2. Anticipate the fields type according to the reuse objectives • For mapping, scheduling, etc. 3. Create the Feeds structure to match the data source and the Content Type fields 4. Execute the importation • test and refine the data importation
  • 9. Let's Go! - Brainstorming (30 min) - Groups and tasks (15 min) - Sprint 1 → Data analysis (1h) - Sprint 2 → Data importation (1h) - Results and discussion (30 min)