This document summarizes and evaluates several algorithms for classification of data streams: VFDTc, UFFT, and CVFDT. It describes their approaches for handling concept drift, detecting outliers and noise. The algorithms were tested on synthetic data streams generated with configurable attributes like drift frequency and noise percentage. Results show VFDTc and UFFT performed best in accuracy, while CVFDT and UFFT were fastest. The study aims to help choose algorithms suitable for different data stream characteristics like gradual vs sudden drift or frequent vs infrequent drift.
Related topics: