SlideShare a Scribd company logo
ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 11|| November – 2016 ||
International Journal of Computational Engineering Research (IJCER)
www.ijceronline.com Open Access Journal Page 1
Reduced Energy Min-Max Decoding Algorithm for Ldpc Code
with Adder Correction Technique
A.V.Manjupriya1
, G.Yuvaraj2
1
PG student,Department of ECE, Vivekanandha College of engineering for women, Tiruchengode.
2
AP/ECE, Department of ECE, Vivekanandha College of engineering for women, Tiruchengode.
I. INTRODUCTION
A. General Introduction
NONBINARY low-density parity-check (NB-LDPC) codes are a real kind of linear block codes defined over
Galois fields (GFs) GF (q = 2p) with p >1. NB-LDPC codes have lot of advantages over its binary counterparts,
including better error correction performance for short/medium code word length, higher burst error correction
capability, and improved performance in the error-floor region. The main disadvantage of NB-LDPC codes is
the high complexity of the decoding algorithms and the derived hardware architectures, which limit their
application in real scenarios where high throughput and reduced silicon area are important requirements. The
main drawbacks of T-EMS, T-MM, and OMO-TMM are: 1) the high number of exchanged messages between
the CN and the VN (q × dc reliabilities), which impacts in the wiring congestion, limiting the maximum
throughput achievable and 2) the high amount of storage elements required in the hardware implementations of
these algorithms, which supposes the major part of the decoder’s area. This reduction in messages introduces a
performance loss in the coding gain that can be controlled by means of the parameter L. NB-LDPC codes are
decoded applying iterative algorithms where messages that represent reliability values are passed from VN to
CN and vice versa.
Extended min-sum (EMS) and min–max algorithms were proposed with the aim of reducing the complexity
offered by the solutions based on QPSA. In these algorithms, the CN equations are simplified by making
approximations to involve only additions and comparisons in their parity-check equations. Since both the
algorithms make use of forward–backward (FB) metrics in the CN processor, the maximum throughput is
bounded due to serial computations. The number of exchanged messages between CN and variable node (VN)
for both the algorithms is nm × dc, where nm is a fraction of q total reliabilities, nm _ q, and dc the CN degree.
Therefore, the number of messages between the nodes is lower than the previous solutions from the literature.
Improvements based on QSPA, such as Fast Fourier Transform-SPA, log-SPA, and max-log-SPA; reduce the
computational load of the parity-check equations without introducing any performance loss. The recently
proposed trellis max-log-QPSA algorithm improves considerably both the area and the decoding throughput
compared with the previous solutions based on QPSA, making use of a path construction scheme to generate the
output message in the check-node (CN) processor. These solutions offer the highest coding gain for high-rate
NB-LDPC codes, but at the same time, they include costly processing that limits their application in real
communication and storage systems.
ABSTRACT
In this paper, high linear architectures for analysing the first two maximum or minimum values are of
paramount importance in several uses, including iterative decoders. We proposed the adder and
LDPC. The min-sum processing step that it gives only two different output magnitude values
irrespective of the number of incoming bit-to check messages. These new micro-architecture layouts
would employ the minimum number of comparators by exploiting the concept of survivors in the
search. These would result in reduced number of comparisons and consequently reduced energy use.
Multipliers are complex units and play an important role in finding the overall area, speed and power
consumption of digital designs. By using the multiplier we can minimize the parameters like latency,
complexity and power consumption.
Keywords: Processing, highrate, high-speed, layered schedule, message compression, NB-LDPC,
trellis min-max (T-MM), VLSI design.
Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique
www.ijceronline.com Open Access Journal Page 2
II. EXISTING SYSTEM
A. Introduction
The analysis of the algorithm then views on the work required for the merging process, because it is the merge
work needed for a given subdivision scheme that ultimately determines the growth of complexity. In this we
introduce a recursive approach to the construction of codes which generalizes the product code construction and
suggests that the design of algorithms for encoding and decoding is amenable to the first techniques of
complexity theory. Long codes are built from a bipartite graph and one or more sub codes; a new code is defined
explicitly by its decomposition into shorter sub codes. These sub codes are then used by the decoder as centres
of local partial computations that, when performed iteratively, correct the errors. The decoding algorithms we
propose generalize and unify the decoding schemes originally presented the product codes and those of low-
density parity-check code. Furthermore, the proper choice of the transmission order for the bits can guarantee
better performance against burst errors or a mixture of burst and random errors.
B. Project Description
NON-BINARY low-density parity-check (NB-LDPC) codes are a promising kind of linear block codes defined
over Galois fields (GFs) GF (q = 2p) with p >1. NB-LDPC codes have numerous advantages over its binary
counterparts, including better error correction performance for short/medium code word length, higher burst
error correction capability, and improved performance in the error-floor region.
C. T-MM Decoding Algorithm with Compressed Messages
A sparse parity-check matrix H defines an NB-LDPC code, where each nonzero element h m, n belongs to a
GFs GF (q = 2p). Another common way to characterize the NB-LDPC codes is by means of a Tanner graph,
where two kinds of nodes are differentiated representing all N columns (VNs) and M rows (CNs) of H. N(m)
denotes the set of VNs connected to a CN m and M(n) denotes the set of CNs connected to a VN n; therefore,
the cardinality of the sets corresponds to dc and dv.
D. T-MM Algorithm with Reduced Set of Messages
In this section, we introduce a novel method to reduce the number of messages exchanged between the CN and
the VN compared with the proposal from [11]. First, we define the reduced set of compressed messages that are
sent from CN to VN and an approximation to obtain the rest of values in the VN. Second, the performance of
the method is analyzed. Third, a technique to generate the most reliable values of the set I (a) without building a
complete trellis structure is presented.
1. Reduction of the CN-to-VN Message
The sets I (a) and P(a) are required to generate the messages Rm,n(a) at the VN processor, as shown in (3).
Reducing the cardinality of I (a), the one of P(a) is also reduced. Our proposal is to keep the L most reliable
values of I (a) and the corresponding ones of P(a) and E(a), where L < (q −1).Defining the complementary set
a__ ∈a  a_, we propose to set E∗ (a__) = m1(a__). Therefore, the cardinality of the set E∗ (a) is kept in q −1.
Table I includes the number of bits of each one of the sets exchanged from CN-to-VN processors compared with
the proposal from [11], where w is the number of bits used to quantize the reliabilities.
Figure 1: Mean value of each reliability
Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique
www.ijceronline.com Open Access Journal Page 3
E. CONCLUSION
The main drawbacks of T-EMS, T-MM, and OMO-TMM are: 1) the high number of exchanged messages
between the CN and the VN (q × dc reliabilities), which impacts in the wiring congestion, limiting the
maximum throughput achievable and 2) the high amount of storage elements required in the hardware
implementations of these algorithms, which supposes the major part of the decoder’s area. To overcome the
drawbacks of T-EMS and T-MM, the proposal in [11] introduces a technique of message compression that
reduces the wiring congestion between the CN and the VN and the storage elements used in the derived
architectures. The messages at the output of the CN are reduced to four elementary sets that include the intrinsic
and extrinsic information, the path coordinates, and the hard-decision symbols.
III. PROPOSED SYSTEM
The block diagram for the proposed CN is detailed in Figure 2 the CN input messages are Q m, n, which come
from the VN processor and the tentative hard-decision symbols z. Both the input messages are used to compute
the normal to- delta-domain transformation (N →_ block in Fig 4.1). DC transformation networks are needed in
the CN, each one requires q × log(q) w-bit MUX following the approach proposed in [19], where w is the
number of bits for the data path. Z is also used to obtain the syndrome β adding all dc tentative hard-decision
symbols. This operation requires w × (dc − 1) XOR gates.
β is used to generate the new hard decision symbols z∗, which are sent to the VN to generate the R∗m,n
messages using (4). Z ∗ symbols are generated using GF(q) adders that require dc × w XOR gates to implement
them.
Figure 2: proposed check node Block Diagram
1. Decoding
As with other codes, optimally decoding an LDPC code on the binary symmetric channel is the NP-complete
problem, although techniques based on iterative belief propagation used in practice lead to good
approximations. In contrast, belief propagation on the binary erasure channel is usually simple where it consists
of iterative constraint satisfaction. For example, consider that the valid code word, 101011, from the example, is
transmitted across a binary erasure channel and received with first and fourth bit erased to yield. Since the
transmitted message must have full fill the code constraints, the message can be organized by written the
message on the top of the factor graph. In this example, the first bit cannot yet be recovered, because all of the
constraints connected to it have more than one unknown bit. In order to proceed with decoding the message, this
procedure is then iterated. The new value for the fourth bit can now be used in conjunction with the first
constraint to recover the first bit as shown below. This means that the first bit must be a 1 to satisfy the leftmost
constraint.
Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique
www.ijceronline.com Open Access Journal Page 4
Thus, the message can be decoded iteratively. For next channel models, the messages passed inside the variable
nodes and check nodes are real numbers, which express probabilities and likelihoods of belief. This result can be
validated by multiplying the corrected code word by the parity-check matrix H:
Because the outcome z (the syndrome) of this operation is the 3 × 1 zero vector, the resulting code word is
successfully validated.
A. Lookup table decoding
It is possible to decode LDPC codes on a relatively low-powered microprocessor by the use of lookup tables.
Whilst codes such as LDPC are generally implemented on high-powered processors, with long block lengths,
there are also applications which use lower-powered processors and short block lengths.
B. Code construction
For large block sizes, LDPC codes are commonly constructed by first studied the behavior of decoders. As the
block size tends to infinity, LDPC decoders can be shown to have a noise threshold below which decoding is
really achieved, and above which decoding is not achieved. This threshold can be optimized by finding the best
proportion of arcs from check nodes and arcs from variable nodes. An approximate graphical approach to
visualizing this threshold is an EXIT chart.
IV. CMOS TECHNOLOGY
A. Basic concepts
Ideally, a transistor behaves like a switch. For NMOS transistors, if the input is 1 the switch is on, otherwise it
off. On the other hand, for the PMOS, if the input is 0 the transistor is on, otherwise the transistor is off.
B. N-Well CMOS Technology
 Process starts with a moderately doped (1015 cm-3) p-type substrate (wafer)
 An initial oxide layer is grown on the entire surface (barrier oxide)
C. Metallization mask
 Aluminium is deposit over the wafer and selectively etched
 The step coverage in this process is most critical (nonlinearity of the wafer surface)
D. Advantages
High input impedance. The input signal is driven electrodes with layer of insulation (the metal oxide) between
them and what they are controlling. This gives them a small amount of capacitance, but virtually infinite
resistance.
 The outputs are actively driven both ways
 The outputs are much more rail-to-rail
 CMOS logic takes very little power when held in a fixed state. The current consumption comes from
switching as both capacitors are charged and discharged. Even then, it has better speed to power ratio
compared to other logic types.
 CMOS gates are very simple. The basic gate is an inverter, which is only two transistors. This always with
low power consumption means it lends itself well to dense integration.
 Mobile application.
E. APPLICATIONS
 Transmission gates may be used as analog multipliers.
 CMOS Technology may also widely used as RF circuits
Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique
www.ijceronline.com Open Access Journal Page 5
V. SIMULATION RESULT
 DC signal and Inverter is given as a input to the NAND gate .Clock frequency given as NAND gate for
simulation output.
 Q BAR, QBAR1 is the output signal.
Figure 5.1: Digital schematic for circuit to extracts the jth
minimum value
Figure 5.2: Design Layout for the output waveform
Figure 5.3: Simulation result for voltage vs time
Figure 5.4: Simulation result for voltage and current
Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique
www.ijceronline.com Open Access Journal Page 6
Figure 5.5: Simulation Result for voltage vs voltage
Figure 5.6: Simulation result for frequency vs time
Figure 5.7: Simulation result for eye diagram
VI. CONCLUSION AND FUTURE ENHANCEMENT
T-MM algorithm to reduce the complexity of the CN architecture, which was the bottleneck in the previous
solutions from the literature. This reduction allow us to offer post layout results for high-rate NB-LDPC codes
over GF(64) without prohibitive areas and higher throughput than the existing proposals, at the expense of some
performance loss. NB-LDPC codes are designed using CMOS Technology. It concludes the T-MM algorithm to
reduce the complexity of CN architecture. Hence the power consumption is reduced. In future, LDPC codes can
be used for reducing the power consumption. Thus, the post synthesis throughput of the other works is reduced
in the same percentage.
Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique
www.ijceronline.com Open Access Journal Page 7
REFERENCES
[1]. Cai.FandZhang.X, “Relaxed min-max decoder architectures for nonbinary low-density parity-check codes,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 21, no. 11, pp. 2010–2023, Nov. 2013.
[2]. Jesús O. Lacruz, Francisco García-Herrero, María José Canet, and Javier Valls Reduced-Complexity Nonbinary LDPC Decoder for
High-Order Galois Fields Based on Trellis Min–Max Algorithm IEEE TRANSACTIONS on very large scale integration (VLSI)
Systems 2016
[3]. Lacruz. J.O, García-Herrero.F, Declercq.D, and Valls.J, “Simplified trellismin–max decoder architecture for nonbinary low-density
parity check codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23,no. 9, pp. 1783–1792, Sep. 2015.
[4]. Li.E, Declercq.D, and Gunnam.K, “Trellis-based extended min-sum algorithm for non-binary LDPC codes and its hardware
structure,” IEEETrans. Commun., vol. 61, no. 7, pp. 2600–2611, Jul. 2013.
[5]. Lin.J, Sha.J, Wang.Z, and Li.L, “Efficient decoder design for nonbinary quasicyclic LDPC codes,” IEEE Trans. Circuits Syst. I,
Reg.Papers, vol. 57, no. 5, pp. 1071–1082, May 2010.
[6]. Mansour.M .MandShanbhag.N.R, “High-throughput LDPCdecoders,”IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
11,no. 6, pp. 976–996, Dec. 2003.
[7]. Savin.V, “Min-max decoding for non-binary LDPC codes,” in Proc.IEEE Int. Symp. Inf. Theory, Jul. 2008, pp. 960–964.
[8]. Ueng.Y.-L, Liao.K.-H, Chou.H.-C, and Yang.C.-J. “A high-throughput trellis based layered decoding architecture for non-binary
LDPC codes using max-log-QSPA,” IEEE Trans. Signal Process., vol. 61, no. 11, pp. 2940–2951, Jun. 2013.
[9]. Wymeersch.H, Steendam.H, and Moeneclaey.M, “Log-domain decoding of LDPC codes over GF(q),” in Proc. IEEE Int. Conf.
Commun., vol. 2. Jun. 2004, pp. 772–776
Zhou.B, Kang.J, Song.S, Lin.S, Abdel-Ghaffar.K, and Xu.M,“Construction of non-binary quasi-cyclic LDPC codes by arraysand
array dispersions,” IEEE Trans. Commun., vol. 57, no. 6,pp. 1652–1662, Jun. 2009.

More Related Content

PDF
Reduced Complexity Maximum Likelihood Decoding Algorithm for LDPC Code Correc...
PDF
High Speed Decoding of Non-Binary Irregular LDPC Codes Using GPUs (Paper)
PDF
Low complexity design of non binary ldpc decoder using extended min-sum algor...
PDF
A new efficient fpga design of residue to-binary converter
PDF
Welcome to International Journal of Engineering Research and Development (IJERD)
PDF
PDF
SC-FDM-IDMA Scheme Employing BCH Coding
PDF
Comparative Study of Watermarking and Encryption Schemes for JPEG2000 Images
Reduced Complexity Maximum Likelihood Decoding Algorithm for LDPC Code Correc...
High Speed Decoding of Non-Binary Irregular LDPC Codes Using GPUs (Paper)
Low complexity design of non binary ldpc decoder using extended min-sum algor...
A new efficient fpga design of residue to-binary converter
Welcome to International Journal of Engineering Research and Development (IJERD)
SC-FDM-IDMA Scheme Employing BCH Coding
Comparative Study of Watermarking and Encryption Schemes for JPEG2000 Images

What's hot (19)

PDF
A method to determine partial weight enumerator for linear block codes
PDF
Sparse Random Network Coding for Reliable Multicast Services
PDF
Design and implementation of log domain decoder
PDF
Analysis of LDPC Codes under Wi-Max IEEE 802.16e
PDF
Performance analysis and implementation for nonbinary quasi cyclic ldpc decod...
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
The performance of turbo codes for wireless communication systems
PDF
PERFORMANCE OF ITERATIVE LDPC-BASED SPACE-TIME TRELLIS CODED MIMO-OFDM SYSTEM...
PDF
Ternary content addressable memory for longest prefix matching based on rando...
PDF
Lantiq/Intel Contributions to G.fast at Scientific Conferences
PDF
Improving The Performance of Viterbi Decoder using Window System
PDF
Network Coding for Distributed Storage Systems(Group Meeting Talk)
PDF
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
PDF
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers
PDF
Energy-Efficient LDPC Decoder using DVFS for binary sources
PDF
Arithmetic Operations in Multi-Valued Logic
PDF
Performance Analysis of Steepest Descent Decoding Algorithm for LDPC Codes
PDF
Iaetsd low power flip flops for vlsi applications
PDF
Simulation of Turbo Convolutional Codes for Deep Space Mission
A method to determine partial weight enumerator for linear block codes
Sparse Random Network Coding for Reliable Multicast Services
Design and implementation of log domain decoder
Analysis of LDPC Codes under Wi-Max IEEE 802.16e
Performance analysis and implementation for nonbinary quasi cyclic ldpc decod...
International Journal of Engineering Research and Development (IJERD)
The performance of turbo codes for wireless communication systems
PERFORMANCE OF ITERATIVE LDPC-BASED SPACE-TIME TRELLIS CODED MIMO-OFDM SYSTEM...
Ternary content addressable memory for longest prefix matching based on rando...
Lantiq/Intel Contributions to G.fast at Scientific Conferences
Improving The Performance of Viterbi Decoder using Window System
Network Coding for Distributed Storage Systems(Group Meeting Talk)
Iaetsd implementation of power efficient iterative logarithmic multiplier usi...
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers
Energy-Efficient LDPC Decoder using DVFS for binary sources
Arithmetic Operations in Multi-Valued Logic
Performance Analysis of Steepest Descent Decoding Algorithm for LDPC Codes
Iaetsd low power flip flops for vlsi applications
Simulation of Turbo Convolutional Codes for Deep Space Mission
Ad

Viewers also liked (17)

DOCX
Screenplay
PPT
Vestido en Los Millares
ODT
Trabajo practico dos buba
PPT
Violencia Domestica
PPTX
Comidas
PPTX
Reservaciones expo miercoles
PDF
O x da Questão ( Eike Batista )
PDF
Presentac prc 03
PDF
Integrales teoria 2
PPTX
E.S.T.No. MIGUEL LERDO DE TEJADA. ESPACIO MAKER 3 A
PPTX
Analysis of Student Evaluation
PDF
Successful Participant Story - Katie Steen - OpenCon 2016
PDF
Aaj ka trend 13.12.16
PPTX
Semester 1 overlook
PDF
Propuesta para la compra de equipos
DOC
Unidad 1
PPT
Presentación1 3 eso
Screenplay
Vestido en Los Millares
Trabajo practico dos buba
Violencia Domestica
Comidas
Reservaciones expo miercoles
O x da Questão ( Eike Batista )
Presentac prc 03
Integrales teoria 2
E.S.T.No. MIGUEL LERDO DE TEJADA. ESPACIO MAKER 3 A
Analysis of Student Evaluation
Successful Participant Story - Katie Steen - OpenCon 2016
Aaj ka trend 13.12.16
Semester 1 overlook
Propuesta para la compra de equipos
Unidad 1
Presentación1 3 eso
Ad

Similar to Reduced Energy Min-Max Decoding Algorithm for Ldpc Code with Adder Correction Technique (20)

PDF
GF(q) LDPC encoder and decoder FPGA implementation using group shuffled beli...
PDF
Performance comparison of eg ldpc codes
DOCX
High performance nb-ldpc decoder with reduction of message exchange
PDF
Iisrt jona priyaa(1 5)
PPTX
Digital communication unit II
PDF
Lightweight hamming product code based multiple bit error correction coding s...
PDF
Ebc7fc8ba9801f03982acec158fa751744ca copie
PDF
LDPC Encoding and Hamming Encoding
PDF
An efficient reconfigurable code rate cooperative low-density parity check co...
PDF
Fpga implementation of linear ldpc encoder
PDF
Non-binary codes approach on the performance of short-packet full-duplex tran...
PDF
An approach to design Flash Analog to Digital Converter for High Speed and Lo...
PDF
A digital calibration algorithm with variable amplitude dithering for domain-...
PDF
Fpga implementation of linear ldpc encoder
PDF
www.ijerd.com
PDF
MDCT audio coding with pulse vector quantizers
PDF
A Configurable and Low Power Hard-Decision Viterbi Decoder in VLSI Architecture
PDF
Bivariatealgebraic integerencoded arai algorithm for
PDF
REDUCED COMPLEXITY QUASI-CYCLIC LDPC ENCODER FOR IEEE 802.11N
PPT
LDPC_CODES.ppt
GF(q) LDPC encoder and decoder FPGA implementation using group shuffled beli...
Performance comparison of eg ldpc codes
High performance nb-ldpc decoder with reduction of message exchange
Iisrt jona priyaa(1 5)
Digital communication unit II
Lightweight hamming product code based multiple bit error correction coding s...
Ebc7fc8ba9801f03982acec158fa751744ca copie
LDPC Encoding and Hamming Encoding
An efficient reconfigurable code rate cooperative low-density parity check co...
Fpga implementation of linear ldpc encoder
Non-binary codes approach on the performance of short-packet full-duplex tran...
An approach to design Flash Analog to Digital Converter for High Speed and Lo...
A digital calibration algorithm with variable amplitude dithering for domain-...
Fpga implementation of linear ldpc encoder
www.ijerd.com
MDCT audio coding with pulse vector quantizers
A Configurable and Low Power Hard-Decision Viterbi Decoder in VLSI Architecture
Bivariatealgebraic integerencoded arai algorithm for
REDUCED COMPLEXITY QUASI-CYCLIC LDPC ENCODER FOR IEEE 802.11N
LDPC_CODES.ppt

Recently uploaded (20)

PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
MET 305 MODULE 1 KTU 2019 SCHEME 25.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPT
Chapter 6 Design in software Engineeing.ppt
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
algorithms-16-00088-v2hghjjnjnhhhnnjhj.pdf
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
anatomy of limbus and anterior chamber .pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
AgentX UiPath Community Webinar series - Delhi
PPT
Drone Technology Electronics components_1
PPTX
Internship_Presentation_Final engineering.pptx
PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
PDF
Geotechnical Engineering, Soil mechanics- Soil Testing.pdf
PDF
BRKDCN-2613.pdf Cisco AI DC NVIDIA presentation
PPTX
ANIMAL INTERVENTION WARNING SYSTEM (4).pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
ETO & MEO Certificate of Competency Questions and Answers
PPTX
24AI201_AI_Unit_4 (1).pptx Artificial intelligence
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
MET 305 MODULE 1 KTU 2019 SCHEME 25.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Chapter 6 Design in software Engineeing.ppt
UNIT-1 - COAL BASED THERMAL POWER PLANTS
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
algorithms-16-00088-v2hghjjnjnhhhnnjhj.pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
anatomy of limbus and anterior chamber .pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
AgentX UiPath Community Webinar series - Delhi
Drone Technology Electronics components_1
Internship_Presentation_Final engineering.pptx
Arduino robotics embedded978-1-4302-3184-4.pdf
Geotechnical Engineering, Soil mechanics- Soil Testing.pdf
BRKDCN-2613.pdf Cisco AI DC NVIDIA presentation
ANIMAL INTERVENTION WARNING SYSTEM (4).pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
ETO & MEO Certificate of Competency Questions and Answers
24AI201_AI_Unit_4 (1).pptx Artificial intelligence

Reduced Energy Min-Max Decoding Algorithm for Ldpc Code with Adder Correction Technique

  • 1. ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 11|| November – 2016 || International Journal of Computational Engineering Research (IJCER) www.ijceronline.com Open Access Journal Page 1 Reduced Energy Min-Max Decoding Algorithm for Ldpc Code with Adder Correction Technique A.V.Manjupriya1 , G.Yuvaraj2 1 PG student,Department of ECE, Vivekanandha College of engineering for women, Tiruchengode. 2 AP/ECE, Department of ECE, Vivekanandha College of engineering for women, Tiruchengode. I. INTRODUCTION A. General Introduction NONBINARY low-density parity-check (NB-LDPC) codes are a real kind of linear block codes defined over Galois fields (GFs) GF (q = 2p) with p >1. NB-LDPC codes have lot of advantages over its binary counterparts, including better error correction performance for short/medium code word length, higher burst error correction capability, and improved performance in the error-floor region. The main disadvantage of NB-LDPC codes is the high complexity of the decoding algorithms and the derived hardware architectures, which limit their application in real scenarios where high throughput and reduced silicon area are important requirements. The main drawbacks of T-EMS, T-MM, and OMO-TMM are: 1) the high number of exchanged messages between the CN and the VN (q × dc reliabilities), which impacts in the wiring congestion, limiting the maximum throughput achievable and 2) the high amount of storage elements required in the hardware implementations of these algorithms, which supposes the major part of the decoder’s area. This reduction in messages introduces a performance loss in the coding gain that can be controlled by means of the parameter L. NB-LDPC codes are decoded applying iterative algorithms where messages that represent reliability values are passed from VN to CN and vice versa. Extended min-sum (EMS) and min–max algorithms were proposed with the aim of reducing the complexity offered by the solutions based on QPSA. In these algorithms, the CN equations are simplified by making approximations to involve only additions and comparisons in their parity-check equations. Since both the algorithms make use of forward–backward (FB) metrics in the CN processor, the maximum throughput is bounded due to serial computations. The number of exchanged messages between CN and variable node (VN) for both the algorithms is nm × dc, where nm is a fraction of q total reliabilities, nm _ q, and dc the CN degree. Therefore, the number of messages between the nodes is lower than the previous solutions from the literature. Improvements based on QSPA, such as Fast Fourier Transform-SPA, log-SPA, and max-log-SPA; reduce the computational load of the parity-check equations without introducing any performance loss. The recently proposed trellis max-log-QPSA algorithm improves considerably both the area and the decoding throughput compared with the previous solutions based on QPSA, making use of a path construction scheme to generate the output message in the check-node (CN) processor. These solutions offer the highest coding gain for high-rate NB-LDPC codes, but at the same time, they include costly processing that limits their application in real communication and storage systems. ABSTRACT In this paper, high linear architectures for analysing the first two maximum or minimum values are of paramount importance in several uses, including iterative decoders. We proposed the adder and LDPC. The min-sum processing step that it gives only two different output magnitude values irrespective of the number of incoming bit-to check messages. These new micro-architecture layouts would employ the minimum number of comparators by exploiting the concept of survivors in the search. These would result in reduced number of comparisons and consequently reduced energy use. Multipliers are complex units and play an important role in finding the overall area, speed and power consumption of digital designs. By using the multiplier we can minimize the parameters like latency, complexity and power consumption. Keywords: Processing, highrate, high-speed, layered schedule, message compression, NB-LDPC, trellis min-max (T-MM), VLSI design.
  • 2. Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique www.ijceronline.com Open Access Journal Page 2 II. EXISTING SYSTEM A. Introduction The analysis of the algorithm then views on the work required for the merging process, because it is the merge work needed for a given subdivision scheme that ultimately determines the growth of complexity. In this we introduce a recursive approach to the construction of codes which generalizes the product code construction and suggests that the design of algorithms for encoding and decoding is amenable to the first techniques of complexity theory. Long codes are built from a bipartite graph and one or more sub codes; a new code is defined explicitly by its decomposition into shorter sub codes. These sub codes are then used by the decoder as centres of local partial computations that, when performed iteratively, correct the errors. The decoding algorithms we propose generalize and unify the decoding schemes originally presented the product codes and those of low- density parity-check code. Furthermore, the proper choice of the transmission order for the bits can guarantee better performance against burst errors or a mixture of burst and random errors. B. Project Description NON-BINARY low-density parity-check (NB-LDPC) codes are a promising kind of linear block codes defined over Galois fields (GFs) GF (q = 2p) with p >1. NB-LDPC codes have numerous advantages over its binary counterparts, including better error correction performance for short/medium code word length, higher burst error correction capability, and improved performance in the error-floor region. C. T-MM Decoding Algorithm with Compressed Messages A sparse parity-check matrix H defines an NB-LDPC code, where each nonzero element h m, n belongs to a GFs GF (q = 2p). Another common way to characterize the NB-LDPC codes is by means of a Tanner graph, where two kinds of nodes are differentiated representing all N columns (VNs) and M rows (CNs) of H. N(m) denotes the set of VNs connected to a CN m and M(n) denotes the set of CNs connected to a VN n; therefore, the cardinality of the sets corresponds to dc and dv. D. T-MM Algorithm with Reduced Set of Messages In this section, we introduce a novel method to reduce the number of messages exchanged between the CN and the VN compared with the proposal from [11]. First, we define the reduced set of compressed messages that are sent from CN to VN and an approximation to obtain the rest of values in the VN. Second, the performance of the method is analyzed. Third, a technique to generate the most reliable values of the set I (a) without building a complete trellis structure is presented. 1. Reduction of the CN-to-VN Message The sets I (a) and P(a) are required to generate the messages Rm,n(a) at the VN processor, as shown in (3). Reducing the cardinality of I (a), the one of P(a) is also reduced. Our proposal is to keep the L most reliable values of I (a) and the corresponding ones of P(a) and E(a), where L < (q −1).Defining the complementary set a__ ∈a a_, we propose to set E∗ (a__) = m1(a__). Therefore, the cardinality of the set E∗ (a) is kept in q −1. Table I includes the number of bits of each one of the sets exchanged from CN-to-VN processors compared with the proposal from [11], where w is the number of bits used to quantize the reliabilities. Figure 1: Mean value of each reliability
  • 3. Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique www.ijceronline.com Open Access Journal Page 3 E. CONCLUSION The main drawbacks of T-EMS, T-MM, and OMO-TMM are: 1) the high number of exchanged messages between the CN and the VN (q × dc reliabilities), which impacts in the wiring congestion, limiting the maximum throughput achievable and 2) the high amount of storage elements required in the hardware implementations of these algorithms, which supposes the major part of the decoder’s area. To overcome the drawbacks of T-EMS and T-MM, the proposal in [11] introduces a technique of message compression that reduces the wiring congestion between the CN and the VN and the storage elements used in the derived architectures. The messages at the output of the CN are reduced to four elementary sets that include the intrinsic and extrinsic information, the path coordinates, and the hard-decision symbols. III. PROPOSED SYSTEM The block diagram for the proposed CN is detailed in Figure 2 the CN input messages are Q m, n, which come from the VN processor and the tentative hard-decision symbols z. Both the input messages are used to compute the normal to- delta-domain transformation (N →_ block in Fig 4.1). DC transformation networks are needed in the CN, each one requires q × log(q) w-bit MUX following the approach proposed in [19], where w is the number of bits for the data path. Z is also used to obtain the syndrome β adding all dc tentative hard-decision symbols. This operation requires w × (dc − 1) XOR gates. β is used to generate the new hard decision symbols z∗, which are sent to the VN to generate the R∗m,n messages using (4). Z ∗ symbols are generated using GF(q) adders that require dc × w XOR gates to implement them. Figure 2: proposed check node Block Diagram 1. Decoding As with other codes, optimally decoding an LDPC code on the binary symmetric channel is the NP-complete problem, although techniques based on iterative belief propagation used in practice lead to good approximations. In contrast, belief propagation on the binary erasure channel is usually simple where it consists of iterative constraint satisfaction. For example, consider that the valid code word, 101011, from the example, is transmitted across a binary erasure channel and received with first and fourth bit erased to yield. Since the transmitted message must have full fill the code constraints, the message can be organized by written the message on the top of the factor graph. In this example, the first bit cannot yet be recovered, because all of the constraints connected to it have more than one unknown bit. In order to proceed with decoding the message, this procedure is then iterated. The new value for the fourth bit can now be used in conjunction with the first constraint to recover the first bit as shown below. This means that the first bit must be a 1 to satisfy the leftmost constraint.
  • 4. Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique www.ijceronline.com Open Access Journal Page 4 Thus, the message can be decoded iteratively. For next channel models, the messages passed inside the variable nodes and check nodes are real numbers, which express probabilities and likelihoods of belief. This result can be validated by multiplying the corrected code word by the parity-check matrix H: Because the outcome z (the syndrome) of this operation is the 3 × 1 zero vector, the resulting code word is successfully validated. A. Lookup table decoding It is possible to decode LDPC codes on a relatively low-powered microprocessor by the use of lookup tables. Whilst codes such as LDPC are generally implemented on high-powered processors, with long block lengths, there are also applications which use lower-powered processors and short block lengths. B. Code construction For large block sizes, LDPC codes are commonly constructed by first studied the behavior of decoders. As the block size tends to infinity, LDPC decoders can be shown to have a noise threshold below which decoding is really achieved, and above which decoding is not achieved. This threshold can be optimized by finding the best proportion of arcs from check nodes and arcs from variable nodes. An approximate graphical approach to visualizing this threshold is an EXIT chart. IV. CMOS TECHNOLOGY A. Basic concepts Ideally, a transistor behaves like a switch. For NMOS transistors, if the input is 1 the switch is on, otherwise it off. On the other hand, for the PMOS, if the input is 0 the transistor is on, otherwise the transistor is off. B. N-Well CMOS Technology  Process starts with a moderately doped (1015 cm-3) p-type substrate (wafer)  An initial oxide layer is grown on the entire surface (barrier oxide) C. Metallization mask  Aluminium is deposit over the wafer and selectively etched  The step coverage in this process is most critical (nonlinearity of the wafer surface) D. Advantages High input impedance. The input signal is driven electrodes with layer of insulation (the metal oxide) between them and what they are controlling. This gives them a small amount of capacitance, but virtually infinite resistance.  The outputs are actively driven both ways  The outputs are much more rail-to-rail  CMOS logic takes very little power when held in a fixed state. The current consumption comes from switching as both capacitors are charged and discharged. Even then, it has better speed to power ratio compared to other logic types.  CMOS gates are very simple. The basic gate is an inverter, which is only two transistors. This always with low power consumption means it lends itself well to dense integration.  Mobile application. E. APPLICATIONS  Transmission gates may be used as analog multipliers.  CMOS Technology may also widely used as RF circuits
  • 5. Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique www.ijceronline.com Open Access Journal Page 5 V. SIMULATION RESULT  DC signal and Inverter is given as a input to the NAND gate .Clock frequency given as NAND gate for simulation output.  Q BAR, QBAR1 is the output signal. Figure 5.1: Digital schematic for circuit to extracts the jth minimum value Figure 5.2: Design Layout for the output waveform Figure 5.3: Simulation result for voltage vs time Figure 5.4: Simulation result for voltage and current
  • 6. Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique www.ijceronline.com Open Access Journal Page 6 Figure 5.5: Simulation Result for voltage vs voltage Figure 5.6: Simulation result for frequency vs time Figure 5.7: Simulation result for eye diagram VI. CONCLUSION AND FUTURE ENHANCEMENT T-MM algorithm to reduce the complexity of the CN architecture, which was the bottleneck in the previous solutions from the literature. This reduction allow us to offer post layout results for high-rate NB-LDPC codes over GF(64) without prohibitive areas and higher throughput than the existing proposals, at the expense of some performance loss. NB-LDPC codes are designed using CMOS Technology. It concludes the T-MM algorithm to reduce the complexity of CN architecture. Hence the power consumption is reduced. In future, LDPC codes can be used for reducing the power consumption. Thus, the post synthesis throughput of the other works is reduced in the same percentage.
  • 7. Reduced Energy Min-Max Decoding Algorithm For Ldpc Code With Adder Correction Technique www.ijceronline.com Open Access Journal Page 7 REFERENCES [1]. Cai.FandZhang.X, “Relaxed min-max decoder architectures for nonbinary low-density parity-check codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 11, pp. 2010–2023, Nov. 2013. [2]. Jesús O. Lacruz, Francisco García-Herrero, María José Canet, and Javier Valls Reduced-Complexity Nonbinary LDPC Decoder for High-Order Galois Fields Based on Trellis Min–Max Algorithm IEEE TRANSACTIONS on very large scale integration (VLSI) Systems 2016 [3]. Lacruz. J.O, García-Herrero.F, Declercq.D, and Valls.J, “Simplified trellismin–max decoder architecture for nonbinary low-density parity check codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23,no. 9, pp. 1783–1792, Sep. 2015. [4]. Li.E, Declercq.D, and Gunnam.K, “Trellis-based extended min-sum algorithm for non-binary LDPC codes and its hardware structure,” IEEETrans. Commun., vol. 61, no. 7, pp. 2600–2611, Jul. 2013. [5]. Lin.J, Sha.J, Wang.Z, and Li.L, “Efficient decoder design for nonbinary quasicyclic LDPC codes,” IEEE Trans. Circuits Syst. I, Reg.Papers, vol. 57, no. 5, pp. 1071–1082, May 2010. [6]. Mansour.M .MandShanbhag.N.R, “High-throughput LDPCdecoders,”IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11,no. 6, pp. 976–996, Dec. 2003. [7]. Savin.V, “Min-max decoding for non-binary LDPC codes,” in Proc.IEEE Int. Symp. Inf. Theory, Jul. 2008, pp. 960–964. [8]. Ueng.Y.-L, Liao.K.-H, Chou.H.-C, and Yang.C.-J. “A high-throughput trellis based layered decoding architecture for non-binary LDPC codes using max-log-QSPA,” IEEE Trans. Signal Process., vol. 61, no. 11, pp. 2940–2951, Jun. 2013. [9]. Wymeersch.H, Steendam.H, and Moeneclaey.M, “Log-domain decoding of LDPC codes over GF(q),” in Proc. IEEE Int. Conf. Commun., vol. 2. Jun. 2004, pp. 772–776 Zhou.B, Kang.J, Song.S, Lin.S, Abdel-Ghaffar.K, and Xu.M,“Construction of non-binary quasi-cyclic LDPC codes by arraysand array dispersions,” IEEE Trans. Commun., vol. 57, no. 6,pp. 1652–1662, Jun. 2009.