This document proposes using a deep stacked autoencoder neural network for compressing handwritten decimal image data. It involves training multiple autoencoders in sequence to form a deep network that can compress the high-dimensional input images into lower-dimensional encoded representations while minimizing information loss. The autoencoders are trained one layer at a time using scaled conjugate gradient descent. Testing on the MNIST handwritten digits dataset showed the deep stacked autoencoder achieved compression by encoding the 400-dimensional input images down to a 25-dimensional representation while maintaining good reconstruction accuracy, as measured by minimizing the mean squared error at each layer.