The document discusses semantic image segmentation using deep learning techniques. It summarizes several state-of-the-art semantic segmentation models like U-Net, Dilated U-Net, PSPNet, Fully Convolutional DenseNets, Global Convolutional Network (GCN), DeepLabV3, and proposes an optimized FRRN model. It implements these models on the CamVid dataset and evaluates their performance using the intersection-over-union score, finding that the optimized FRRN model achieves a score of 0.87.