This document discusses a framework for dynamic resource allocation and efficient scheduling strategies in cloud computing platforms for high-performance computing (HPC). It proposes using a parallel genetic algorithm to find optimal allocation of virtual machines to physical resources in order to maximize resource utilization. The algorithm represents the resource allocation problem as an unbalanced job scheduling problem. It uses genetic operators like mutation and crossover to efficiently allocate requests for resources to idle nodes. Compared to a traditional genetic algorithm, the parallel genetic algorithm improves the speed of finding the best allocation and increases resource utilization. Future work could explore implementing dynamic load balancing and using big data concepts on the cloud.