SlideShare a Scribd company logo
Eliot Horowitz, CTO & Co-Founder
@eliothorowitz
MongoDB World 2018: Keynote
doc = { line_items : [ { item : 5,
quantity : 6 }, … ] }
db.orders.insertOne( doc );
for x in doc.line_items:
db.inventory.update( { _id : x.item },
{ $inc : { number : -1 * x.qty } })
doc = { line_items : [ { item : 5,
quantity : 6 }, … ] }
db.orders.insertOne( doc );
for x in doc.line_items:
db.inventory.update( { _id : x.item },
{ $inc : { number : -1 * x.qty } })
doc = { line_items : [ { item : 5,
quantity : 6 }, … ] }
db.orders.insertOne( doc );
for x in doc.line_items:
db.inventory.update( { _id : x.item },
{ $inc : { number : -1 * x.qty } })
session.start_transaction()
doc = { line_items : [ { item : 5, quantity: 6 }, … ] }
db.orders.insertOne( doc, session=session );
for x in doc.line_items:
db.inventory.update( { _id : x.item } ,
{ $inc : { number : -1 * x.qty } },
session=session )
session.commit_transaction()
Familiar
Conversational
Performant
Familiar
Conversational
Performant
Multi-document ACID transactions
4.0 4.2
Marathon to transactions: the homestretch
MongoDB 3.0 MongoDB 3.2 MongoDB 3.4 MongoDB 3.6 MongoDB 4.0
Single Replica Set
Transactions
MongoDB 4.2
Sharded
Transactions
New Storage engine
(WiredTiger)
Enhanced replication
protocol: stricter
consistency & durability
Shard membership
awareness
Consistent secondary
reads in sharded clusters
Storage support for
prepared transactions
Transaction – compatible
chunk migration
WiredTiger default storage
engine
Logical sessions
Make catalog
timestamp-aware
More extensive
Wired Tiger repair
Config server
manageability
improvements
Retryable writes
Replica set
point-in-time reads
Transaction manager
Read concern "majority" Causal Consistency
Recoverable rollback via
WT checkpoints
Global point-in-time reads
Cluster-wide logical clock Recover to a timestamp
Oplog applier prepare
support for transactions
Storage API to changes to
use timestamps
Sharded catalog
improvements
Collection catalog
versioning
Make collection
drops two phrase
UUIDs in sharding
Fast in-place updates to
large documents in WT
In Progress
Done
Sharded Transaction Feature
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
{
order_id,
customer_id
}
{
line_item_id,
order_id
}
session.start_transaction()
db.line_items.update(
{ order_id : my_order_id } ,
{ $mul : { price : discout } },
sesison = my_session)
db.orders.update(
{ order_id : my_order_id } ,
{ $mul : { order_total : discount
} },
session = my_session )
session.end_transaction()
{
order_id,
customer_id
}
{
line_item_id,
order_id
}
session.start_transaction()
db.line_items.update(
{ order_id : my_order_id } ,
{ $mul : { price : discout } },
sesison = my_session)
db.orders.update(
{ order_id : my_order_id } ,
{ $mul : { order_total : discount
} },
session = my_session )
session.end_transaction()
{
order_id,
customer_id,
line_iems: [
{
name : ,
price : ,
qty : ,
}
]
}
db.orders.update(
{ order_id : my_order_id },
{ $mul :
{ order_total :
discount,
"line_items.$[].price" :
discount }
}
)
{
order_id,
customer_id,
line_iems: [
{
name : ,
price : ,
qty : ,
}
]
}
Distinct business objects
Rollups / Views
Coming soon:
change shard keys
MongoDB World 2018: Keynote
4.0
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
Relationships
{
order_id,
line_items: [ … ],
}
{
product_id,
inventory
}
REFERENCE
Relationships
EMBEDDED
{
order_id,
line_items: [
{ product_id,
qty,
subtotal
}
]
}
{
order_id,
line_items: [ … ],
}
{
product_id,
inventory
}
REFERENCE
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB is the best
database for relationships
Natural
Dynamic schema
Query language
Native drivers
Document model
High Availability
Scale-out
Workload isolation
Zoned sharding
Distributed systems
Consistency
Portability
Security
Runs anywhere
The best database for modern
applications
Distributed Systems Runs EverywhereDocument Model
Any use case, any platform
MongoDB World 2018: Keynote
db.products.find().limit(1).pretty()
{
"_id" : ObjectId("5b116f1b3e1c824cb7950480"),
"id" : "298157062",
"name" : "Uptown Laptop TSA-Friendly Backpack",
"sku" : "MON25232000",
"image" : {
"large" : "/images/products/bags/large_backpack.jpg",
"thumb" : "/images/products/bags/thumb_backpack.jpg"
},
"color" : "black",
"inventory" : 100,
"category" : [
"products",
"bags",
"backpack",
"travel"
],
"price" : NumberDecimal("1233423"),
"reviews" : [ ],
"likes" : 101,
"tweets" : 13,
"type" : "backpack"
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
DEMO
Atlas Data Explorer
Jonathan Balsano
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
grep -o "[0-9]+ms" <filename> |
sort -n |
tail -n 20 |
uniq |
xargs -n 1 -I x grep x <filename>
Composable
Debuggable
Powerful
db.logs.aggregate( [
{ $sort : { time : -1 } },
{ $limit : 20 },
{ $group : { _id : "$queryShape",
count : { $sum : 1 } }
}
] )
Date
Manipulation
String
Manipulation
Type
Casts
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
DEMO
Aggregation Pipeline Builder
Asya Kamsky
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
db.products.find( {} )
https://api.swagstore.com/products
Categories:
S shirts
 hats
 socks
https://api.swagstore.com/products?cat=shirts
db.products.find( { category : "shirts" } )
Categories:
S shirts
 hats
 socks
Brands:
 IBM
S MongoDB
https://api.swagstore.com/products?cat=shirts&brand=mongodb
db.products.find( { category : "shirts",
brand : "mongodb"
} )
Categories:
S shirts
 hats
 socks
Brands:
 IBM
S MongoDB
Price:
…api.swagstore.com/products?cat=shirts&brand=mongodb&priceMin=10&priceMax=120
$Min $Max
G
O
db.products.find( { category : "shirts",
brand : "mongodb",
price : { $lt : 120, $gt: 10 }
} )
Categories:
S shirts
 hats
 socks
Brands:
 IBM
S MongoDB
Price:
Price: Low to High
…ducts?cat=shirts&brand=mongodb&priceMin=10&priceMax=120&sort=price&order=asc
$Min $Max
G
O
db.products.find( { category : "shirts",
brand : "mongodb",
price : { $lt : 120, $gt: 10 }
} ).sort( { price : 1 } )
Categories:
S shirts
 hats
 socks
Brands:
 IBM
S MongoDB
Price:
Rating:

…mongodb&priceMin=10&priceMax=120&sort=price&order=asc&sort2=rating&order2=desc
$Min $Max
G
O
db.products.find( { category : "shirts",
brand : "mongodb",
price : { $lt : 120, $gt: 10 }
} ).sort( { price : 1, rating : -1 } )
?!
db.products.find( { category : "shirts",
brand : "mongodb",
price : { $lt : 120, $gt: 10 }
} ).sort( { price : 1, rating : -1 } )
Categories:
S shirts
 hats
 socks
Brands:
 IBM
S MongoDB
Price:
Rating:

…mongodb&priceMin=10&priceMax=120&sort=price&order=asc&sort2=rating&order2=desc
$Min $Max
G
O
MQL
REST
db.products.find( { category : "shirts",
brand : "mongodb",
price : { $lt : 120, $gt: 10 }
} ).sort( { price : 1, rating : -1 } )
Categories:
S shirts
 hats
 socks
Brands:
 IBM
S MongoDB
Price:
Rating:

…mongodb&priceMin=10&priceMax=120&sort=price&order=asc&sort2=rating&order2=desc
$Min $Max
G
O
REST (Shitty Query
Language)
Categories:
S shirts
 hats
 socks
Brands:
 IBM
S MongoDB
Price:
Rating:

$Min $Max
G
O
db.products.find( { category : "shirts",
brand : "mongodb",
price : { $lt : 120, $gt: 10 }
} ).sort( { price : 1, rating : -1 } )
The serverless platform
for building modern
applications
QueryAnywhere Functions
MongoDB World 2018: Keynote
Atlas Stitch Native SDK
Auth
Rules
Fully integrated
authentication
Declarative rules
Full MongoDB query
language
MongoDB World 2018: Keynote
DEMO
Stitch QueryAnywhere
Eric Daniels
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
QueryAnywhere Functions
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
BI 2.5 ChartsODBC Driver
MongoDB World 2018: Keynote
DEMO
ODBC & Charts
Grigori Melnik
Download a public beta from
mongodb.com/charts
Play, learn, provide your feedback! Happy charting!
Atlas CRUD
Aggregation Pipeline
Builder
Stitch QueryAnywhere
Analytics
MongoDB World 2018: Keynote
High
Availability
Scale
Out
Workload
Isolation
Zoned
Sharding
Latency
Regulation
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
DEMO
Atlas Global Clusters
Andrew Davidson
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
# Subscribe to change notifications in a collection.
cursor = client.my_db.my_collection.watch([
{'$match': {'operationType':
{'$in': [
'insert',
'replace' ]
}
}},
{'$match': {'fullDocument.n':
{'$gte': 1}}}
])
# Loops forever.
for change in cursor:
print(change['fullDocument'])
MongoDB World 2018: Keynote
QueryAnywhere Functions Stitch Triggers
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
DEMO
Stitch DB Triggers
Jane Fine
MongoDB World 2018: Keynote
QueryAnywhere Functions Stitch Triggers
Global Clusters
Stitch Triggers
MongoDB World 2018: Keynote
M0
MongoDB World 2018: Keynote
No lock-in
Regions
Services
MongoDB World 2018: Keynote
MongoDB World 2018: Keynote
DEMO
Ops Manager / Kubernetes
James Broadhead
MongoDB World 2018: Keynote
final Barcode barcode =
data.getParcelableExtra(BarcodeActivity.BARCODE_FIELD);
final Document query = new Document("barcodeId",
barcode.displayValue);
final Document update = new Document("$inc",
new Document("itemsScanned", 1));
final Document after = itemsColl.findOneAndUpdate(
query,
update,
new FindOneAndUpdateOptions().
upsert(true).
returnDocument(ReturnDocument.AFTER));
final Barcode barcode =
data.getParcelableExtra(BarcodeActivity.BARCODE_FIELD);
final Document query = new Document("barcodeId",
barcode.displayValue);
final Document update = new Document("$inc",
new Document("itemsScanned", 1));
final Document after = itemsColl.findOneAndUpdate(
query,
update,
new FindOneAndUpdateOptions().
upsert(true).
returnDocument(ReturnDocument.AFTER));
MongoDB World 2018: Keynote
DEMO
MongoDB Mobile
Andrew Morrow
Collection.sync(
documentID,
conflictResolver,
eventListener);
Mobile sync syntax specifics
Mobile sync architecture
Stitch Mobile: Sync
Change
Streams
Atlas
Stitch
Mobile SyncQueryAnywhere Functions Stitch Triggers
Atlas free tier on
Google Cloud Platform
Cross-cloud
Kubernetes
Mobile Sync
GA
QueryAnywhere
Functions
Triggers
Mobile Sync
CRUD
Global Clusters
Free Tier on GCP
Enterprise security
features
Sharding import
Query enhancements
Free monitoring
Multi-document ACID
transactions
Best database for modern applications
M040 course call-out
MongoDB World 2018: Keynote
Innovation Award Winners
Global Go-to-Market
Partner of the Year The Enterprise Launch Fast Scale
Data-Driven Business Customer Experience Healthcare Internet of Things
Delivery Partner of the Year
The William Zola Award for
Community Excellence Atlas Savvy Startup
MongoDB World 2018: Keynote

More Related Content

PDF
MongoDB World 2018: Building Intelligent Apps with MongoDB & Google Cloud
PDF
MongoDB World 2018: Using Change Streams to Keep Up with Your Data
PPTX
MongoDB World 2018: Time for a Change Stream - Using MongoDB Change Streams t...
PDF
Java/Scala Lab: Борис Трофимов - Обжигающая Big Data.
PDF
MongoDB .local Chicago 2019: Practical Data Modeling for MongoDB: Tutorial
PPTX
MongoDB Stich Overview
PDF
MongoDB .local Munich 2019: Still Haven't Found What You Are Looking For? Use...
PDF
Faites évoluer votre accès aux données avec MongoDB Stitch
MongoDB World 2018: Building Intelligent Apps with MongoDB & Google Cloud
MongoDB World 2018: Using Change Streams to Keep Up with Your Data
MongoDB World 2018: Time for a Change Stream - Using MongoDB Change Streams t...
Java/Scala Lab: Борис Трофимов - Обжигающая Big Data.
MongoDB .local Chicago 2019: Practical Data Modeling for MongoDB: Tutorial
MongoDB Stich Overview
MongoDB .local Munich 2019: Still Haven't Found What You Are Looking For? Use...
Faites évoluer votre accès aux données avec MongoDB Stitch

What's hot (19)

PPTX
Spring Data, Jongo & Co.
PDF
Creating, Updating and Deleting Document in MongoDB
PPTX
Database Trends for Modern Applications: Why the Database You Choose Matters
PPT
Real World Application Performance with MongoDB
PDF
The Ring programming language version 1.5.3 book - Part 43 of 184
PPTX
PistonHead's use of MongoDB for Analytics
PPTX
Keynote: New in MongoDB: Atlas, Charts, and Stitch
PPTX
Webinar: Transitioning from SQL to MongoDB
PDF
MongoDB Days Silicon Valley: Winning the Dreamforce Hackathon with MongoDB
PPTX
MongoDB Days Silicon Valley: Introducing MongoDB 3.2
PDF
MongoDB.local DC 2018: Tutorial - Data Analytics with MongoDB
KEY
MongoDB, PHP and the cloud - php cloud summit 2011
PPTX
Query in Couchbase. N1QL: SQL for JSON
PDF
Visualizing Mobile Broadband with MongoDB
PPTX
Creating a Single View: Data Design and Loading Strategies
PPTX
High Performance Applications with MongoDB
PPTX
MongoDB and Hadoop: Driving Business Insights
PPTX
ReadConcern and WriteConcern
PPTX
Creating a Single View Part 2: Loading Disparate Source Data and Creating a S...
Spring Data, Jongo & Co.
Creating, Updating and Deleting Document in MongoDB
Database Trends for Modern Applications: Why the Database You Choose Matters
Real World Application Performance with MongoDB
The Ring programming language version 1.5.3 book - Part 43 of 184
PistonHead's use of MongoDB for Analytics
Keynote: New in MongoDB: Atlas, Charts, and Stitch
Webinar: Transitioning from SQL to MongoDB
MongoDB Days Silicon Valley: Winning the Dreamforce Hackathon with MongoDB
MongoDB Days Silicon Valley: Introducing MongoDB 3.2
MongoDB.local DC 2018: Tutorial - Data Analytics with MongoDB
MongoDB, PHP and the cloud - php cloud summit 2011
Query in Couchbase. N1QL: SQL for JSON
Visualizing Mobile Broadband with MongoDB
Creating a Single View: Data Design and Loading Strategies
High Performance Applications with MongoDB
MongoDB and Hadoop: Driving Business Insights
ReadConcern and WriteConcern
Creating a Single View Part 2: Loading Disparate Source Data and Creating a S...
Ad

Similar to MongoDB World 2018: Keynote (20)

PDF
MongoDB.local Paris Keynote
PDF
MongoDB Meetup
PDF
MongoDB Aggregation Framework
PPTX
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
PPTX
Data Analytics with MongoDB - Jane Fine
PPTX
1403 app dev series - session 5 - analytics
PDF
VBA API for scriptDB primer
PPTX
How to leverage what's new in MongoDB 3.6
PDF
Online | MongoDB Atlas on GCP Workshop
PDF
Active Record Inheritance in Rails
KEY
Schema Design with MongoDB
KEY
OSCON 2011 CouchApps
PDF
Fun Teaching MongoDB New Tricks
PPTX
Query for json databases
PPTX
Google apps script database abstraction exposed version
PDF
mongodb-introduction
PDF
MongoDB With Style
PDF
MongoDB .local Toronto 2019: Using Change Streams to Keep Up with Your Data
PDF
GraphQL - when REST API is not enough - lessons learned
PPTX
Using MongoDB As a Tick Database
MongoDB.local Paris Keynote
MongoDB Meetup
MongoDB Aggregation Framework
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
Data Analytics with MongoDB - Jane Fine
1403 app dev series - session 5 - analytics
VBA API for scriptDB primer
How to leverage what's new in MongoDB 3.6
Online | MongoDB Atlas on GCP Workshop
Active Record Inheritance in Rails
Schema Design with MongoDB
OSCON 2011 CouchApps
Fun Teaching MongoDB New Tricks
Query for json databases
Google apps script database abstraction exposed version
mongodb-introduction
MongoDB With Style
MongoDB .local Toronto 2019: Using Change Streams to Keep Up with Your Data
GraphQL - when REST API is not enough - lessons learned
Using MongoDB As a Tick Database
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...

Recently uploaded (20)

PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPTX
Spectroscopy.pptx food analysis technology
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Encapsulation theory and applications.pdf
PDF
Electronic commerce courselecture one. Pdf
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Machine Learning_overview_presentation.pptx
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Getting Started with Data Integration: FME Form 101
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Empathic Computing: Creating Shared Understanding
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
Programs and apps: productivity, graphics, security and other tools
Per capita expenditure prediction using model stacking based on satellite ima...
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Spectroscopy.pptx food analysis technology
Unlocking AI with Model Context Protocol (MCP)
Encapsulation theory and applications.pdf
Electronic commerce courselecture one. Pdf
Group 1 Presentation -Planning and Decision Making .pptx
Reach Out and Touch Someone: Haptics and Empathic Computing
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Machine Learning_overview_presentation.pptx
gpt5_lecture_notes_comprehensive_20250812015547.pdf
SOPHOS-XG Firewall Administrator PPT.pptx
Assigned Numbers - 2025 - Bluetooth® Document
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Getting Started with Data Integration: FME Form 101
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Empathic Computing: Creating Shared Understanding
Dropbox Q2 2025 Financial Results & Investor Presentation
Programs and apps: productivity, graphics, security and other tools

MongoDB World 2018: Keynote

Editor's Notes

  • #27: Best way to work with data This is the first of three ____ that make MDB the best database platform for most applications.
  • #40: Aggregation
  • #43: Create stage-by-stage See documents each time
  • #44: Create stage-by-stage See documents each time
  • #45: Create stage-by-stage See documents each time
  • #46: Create stage-by-stage See documents each time
  • #47: Create stage-by-stage See documents each time
  • #49: AVAILABLE TODAY
  • #50: The agg framework is really powerful, but in some cases its hard to get access to it, like in a web browser.
  • #60: beta last year
  • #61: beta last year
  • #62: beta last year
  • #63: beta last year
  • #64: beta last year
  • #67: beta last year
  • #74: So now that you’ve great stuff in your database, you also want to get additional business value from thata data.
  • #75: The heart of analytics in MDB is the agg pipeline, but people/analsyts want a more "bueinessy" tool
  • #76: WHAT BI FEATURES – AVAILABLE NOW ODBC! I can connect e xceltto atlas in minutes – AVAILBLE NOW Charts
  • #80: New in Working with Data
  • #81: So documents are the 1st pillar, disctribuets sytems are the second Control over where your data goes Why distribuetd db: Async Streaming, Services, Cloud, Globally distribuetd
  • #83: Geo distribution
  • #84: 1) Ny 2) add +emea 3) +australia This is suoer powerful, impossiblr with any other tool on the planet, but stt a lot to manage Wouldn’t it be nic….
  • #85: 1) Ny 2) add +emea 3) +australia This is suoer powerful, impossiblr with any other tool on the planet, but stt a lot to manage Wouldn’t it be nic….
  • #86: 1) Ny 2) add +emea 3) +australia This is suoer powerful, impossiblr with any other tool on the planet, but stt a lot to manage Wouldn’t it be nic….
  • #87: This is possible with zoned sharding, super powerful… but a burden to maintain
  • #89: This is possible with zoned sharding, super powerful… but a burden to maintain
  • #90: THINK HOW HARD BEFORE Atlas global writes clusters are availabele right now. In 3.6, we added chang streams
  • #91: Give you:….
  • #92: talk about architecture you have to add
  • #93: Triggers for the modern, distributed world
  • #94: Triggers for the modern, distributed world
  • #95: FUNCTIONS!
  • #96: FUNCTIONS!
  • #97: FUNCTIONS!
  • #98: FUNCTIONS!
  • #99: FUNCTIONS!
  • #102: Stitch Triggers GA today
  • #103: New in Distributing Data
  • #107: Atlas x-cloud clusters
  • #111: On prem is first-class
  • #112: On prem is first-class
  • #113: On prem is first-class
  • #119: Everywhere!