This document presents a new algorithm for extracting and summarizing news from online newspapers. The algorithm first extracts news related to the topic using keyword matching. It then distinguishes different types of news about the same topic. A term frequency-based summarization method is used to generate summaries. Sentences are scored based on term frequency and the highest scoring sentences are selected for the summary. The algorithm was evaluated on news datasets from various newspapers and showed good performance in intrinsic evaluation metrics like precision, recall and F-score. Thus, the proposed method can effectively extract and summarize online news for a given keyword or topic.