This document proposes a novel blind super resolution method to improve the spatial resolution of real-life video sequences. The key aspects of the proposed method are:
1) It estimates blur without knowing the point spread function or noise statistics using a non-uniform interpolation super resolution method and multi-scale processing.
2) It uses a cost function with fidelity and regularization terms of a Huber-Markov random field to preserve edges and fine details in the reconstructed high resolution frames.
3) It performs masking to suppress artifacts from inaccurate motions, adaptively weighting the fidelity term at each iteration for faster convergence.
The method is tested on real-life videos with complex motions, objects, and brightness changes, showing